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1.1 Introduction

Decision-making situations, small or large, are everywhere: from simple

and fast perceptual decisions to those with long-term effects, such as accepting or

declining a job offer – we have to make decisions on a daily basis. The choice

alternatives may be few or many; the outcomes may be certain or probable; the

decision-maker may or may not be under time constraints. They all call for an

attempt to find ways to model the underlying choice processes that can account for

the data that can be collected during these processes. The goal is to come up with

models that are, on the one hand, accurate and with explanatory power, and on the

other hand, enjoy simplicity and robustness.

Mathematics has a role to play here. During the last 60 years mathematical mod-

els of decision theory have been developed to study these processes using tools

from the theory of stochastic processes. These models have become the dominant

approach to modeling decision processes in psychology and cognitive science. The

probabilistic framework is theoretically consistent with the idea that the outcome

of the choice and the time it takes to make a decision, i.e., the response time or reac-

tion time, are not set or determined at the outset, but are something that emerges

out of the deliberation process.

Intuitively a stochastic process is an entity that evolves randomly in time or

space. In physics or biology and neuroscience this entity may be particles or neu-

ral activation. In psychology and cognitive science, depending on content and

context, it is referred to as amount of information, activation, pieces of evidence,

preference, and the like.

In psychology, two major classes of stochastic processes have mainly been

applied to account for choice frequencies and choice response times. One class

of models assumes that evidence for one option is at the same time evidence

against the alternative option. They are mostly applied to binary choice situations.

Within this class, random walk models accumulate discrete evidence in discrete

time, whereas diffusion models accumulate continuous evidence in continuous

time. The most commonly used version of the diffusion model is the Wiener diffu-

sion model that linearly accumulates evidence without any decay (Ratcliff, 1978),

but other models include the Ornstein–Uhlenbeck model that linearly accumulates

evidence with decay (Busemeyer & Townsend, 1993; Diederich, 1995), and the

leaky competing accumulator (LCA) model (Usher & McClelland, 2001) that
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Stochastic Methods for Modeling Decision-making 3

nonlinearly accumulates evidence with decay. The other class of models consists

of accumulator and counter models. They can easily be extended to more than

two choice alternatives, because an accumulator/counter is established for each

choice alternative separately, and evidence is accumulated in parallel. A decision

is made as soon as one counter wins the race to reach one preset criterion. The

accumulators/counters may or may not be independent. Poisson-counter models

are prominent examples, but random walk and diffusion models, one process for

each alternative with a single criterion (absorbing boundary) for each process, can

also be employed. Other accumulator models such as LATER (linear approach

to threshold with ergodic rate) (Carpenter & Williams, 1995) and LBA (linear

ballistic accumulator) (Brown & Heathcote, 2005) assume a deterministic linear

increase in evidence for one trial. Randomness in responses occurs by assuming

a normal distribution across the linear accumulation rate. These models are not

considered further here.

In the following we focus on random walk/diffusion models. Our focus will not

be on presenting the state-of-the-art research from the mathematical perspective

or the latest debates in psychology and neuroscience. Rather, we we will try to

provide the underlying mathematical ideas and tools that have proven to be very

successful in the last 60 years in psychological research. Along the way, we will

discuss various models that have been proposed and try to lay out the underlying

mathematical assumptions that have been placed. In particular, we start with a very

simple model, a random walk, and develop more elaborate models from there. The

focus will be on Markov chains, which has been referred to as the matrix approach

to derive predictions of the models. Numerous examples provide deeper insight to

the interplay between psychology and mathematics, i.e., mathematical psychology.

1.2 Probabilistic Modeling in Decision Theory

Sequential sampling models are among some of the most developed

decision-making models. These models assume that characteristics of the choice

options can be mapped onto a hypothetical numerical dimension representing the

instantaneous level of information, activation, evidence, or preference. Further,

they assume some random fluctuation of this value over time in the course of the

accumulation process. Therefore, sequential sampling models can be built using

stochastic processes, that is, a collection of random variables, representing the

evolution of some system of random values over time,

{Xα}α∈A.

Note that the index set or parameter set of the random variable X may be discrete

(α = n ∈ N) or continuous (α = t ∈ R
+) and relates to the time of a realization

of the random variable. We will call this set here time set or time space. The state

space S defines the values or states that the random variables Xα can take on and

may be also discrete (Z) or continuous (R). Let us make a brief remark on the

connection between discrete and continuous models. Discrete-time models have
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the advantage that their analysis often does not involve hard-core mathematical

technology. This simplicity adds to their appeal, especially to the less mathemat-

ically sophisticated user. On the other hand, some experience with both of these

set-ups is enough to show that the continuous processes are often more amenable

to analysis. When at all possible, it is more helpful to derive closed formulas for

continuous processes, and even in the absence of such formulas, one can often use

various techniques from numerical analysis to return to the discrete set-up and use

it as an approximation of the continuous process.

Note that there is often a close connection between discrete and continuous pro-

cesses. The celebrated Wiener process can be viewed as the limit of suitably scaled

random walks. This connection can also sometimes be used to analyze one of these

models in terms of the other.

1.2.1 Information Accrual

During the last decades, various probabilistic models have been developed to

explain the process of decision-making based on accumulation of evidence for the

alternatives at hand. Each model represents the space of available information up

to a certain point in time as a process that takes values in a subset of the Euclidean

space Rd, where the dimension d is often equal to the number of alternatives.

The process starts at a given point that represents the initial information or bias

the decision-maker may have toward one of the choice alternatives. The informa-

tion accrued up to time T (which may be discrete or continuous) corresponds to a

point in this space. Thus, the entire deliberation process can be viewed as driven by

a discrete or continuous random process. The discrete models often lead to mod-

els based on random walks, whereas continuous models are based on a number

of diffusion models. The structure and parameters of this stochastic process high-

light the underlying assumptions about the process one wants to investigate, for

instance, sensory receptions, storing, memory retrieval, preference, categorizing,

and more.

Most of the models that have been developed in these fields are based on Markov

processes. The characteristic feature of a Markov process is that the dynamics of

the process is determined by the current state of the process.

One of the implications of the Markov property is that the past can only influence

the future through the present state of the system. Another way of stating this is that

given the present state of the process, its future is independent from its past. This

clearly indicates that a Markov process has a weak memory. This drawback aside,

the Markov assumption allows one to bring a large body of existing mathematical

theory (including tools from linear algebra and analysis) to bear on various appli-

cations. There are various generalizations of the Markov property that allow for

some amount of memory. These systems that have a bounded amount of memory

can also be recast as a Markov model with a different state space (see subsection

1.8). On the other hand, it must be mentioned that non-Markovian models (such as

self-avoiding random walks) have proven to be much more difficult to analyze.
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Stochastic Methods for Modeling Decision-making 5

Another component of any decision model is the termination criterion. The

stochastic process is run until a stopping criterion is satisfied. There are various

ways to stop the process. The most obvious one is to have a fixed period for delib-

eration, after which the process is stopped. This may be related to an experimental

set-up, in which the decision-maker is asked to make a response at a predeter-

mined point in time. In other words, it is a time-based criterion. In many models,

however, the criterion is satisfied when the process crosses a certain threshold,

representing a sufficient amount of evidence in favor of one of the alternatives.

Here the decision-maker sets an evidence-based criterion. The former criterion has

also been called fixed stopping rule, the latter optional stopping rule (Busemeyer

& Diederich, 2002). In the presence of more than two alternatives, it seems that

both the accumulation process and the stopping criterion can be rather involved.

In modeling situations in which decision-making is subject to time pressure, the

criterion for stopping can also change with time. These will be discussed in the

section on stopping times. We will start with a brief and rather informal discussion

of the random walk model.

1.2.2 Random Walk Models – An Example

In this subsection, we will give an informal definition of random walks on the

line and explain how this model can be used as a prototype of a decision-making

system. More details will be given in the subsequent sections. We will start with an

example of a simple random walk with two absorbing boundaries. A random walk

{Xn} is a stochastic process with discrete time space, that is, the realization of the

random variable occurs at discrete times

t = 0, 1, 2, . . .

and discrete state space S. The random process Xn can thus take value in the set

{0, ±1, ±2, . . .}. The model as such has few applications in psychology. However,

it serves as an intuitive example and introduces basic concepts used throughout the

chapter.

Suppose a person has to make a decision between two choice options A and B. At

any moment in time, the person may sample information ξ for choosing A or B. For

the sake of concreteness, let us assume that the probability of sampling information

in favor of option A equals 0.3; the probability of sampling information ξ in favor

of option B is 0.7. Amounts of information are coded in units of one. We will

represent the total amount of gathered information by a real number. Assume that

information in favor of option A amounts to moving from point u to the point u+1

and information in favor of B amounts to moving from u to the point u−1. Suppose

that ξ denotes the unit of gathered information. We will express this by writing

Pr [ξ = +1] = 0.3, Pr [ξ = −1] = 0.7.

The coin-tossing random variables ξi are examples of the signed Bernoulli distri-

bution. A random variable ξ is said to have a signed Bernoulli distribution if there
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is 0 < p < 1 such that ξ takes values 1 or −1 with probabilities p and 1 − p. We

express this mathematically by writing

Pr [ξ = 1] = p, Pr [ξ = −1] = 1 − p.

Signed Bernoulli random variables are variations of the ordinary Bernoulli random

variables, where, instead of 1 and −1, the random variable takes values of 1 and 0.

Two important assumptions have been made here: identical distribution of steps,

and their independence.

Assumption 1.1 The random variables ξi are identically distributed. In other

words, the probability that the information accrued at time i is ±1 is the same as

the probability that the information at time j be equal to ±1:

Pr [ξi = 1] = Pr
[

ξj = 1
]

=
1

2
, Pr [ξi = −1] = Pr

[

ξj = −1
]

=
1

2
.

This assumption essentially states that the information source has reached

a stationary distribution. Such assumptions are rather common in modeling

problems.

Assumption 1.2 The random variables ξi are independent. In other words, the

information accrued at time i will not influence any ξj for j �= i. This can be

mathematically expressed as follows. For any values of ǫ1, . . . , ǫn = ±1, we have

Pr [ξ1 = ǫ1, . . . , ξn = ǫn ] =
∏

1≤ j≤n

Pr
[

ξj = ǫj

]

.

Let Xn denote the amount of information accumulated up to time unit n, n ∈ N,

i.e.

Xn =

n
∑

i=1

ξi. (1.1)

Continuing with our example, assume that at the beginning of the trial no amount

of information has been sampled yet, X0 = 0, and that the sampling process stops

as soon as a critical value is reached for either initiating a response in favor of

option A or in favor of option B. Let us assume that the critical value for option A

is θA = 4 and for option B is θB = −4. The state space for this example is therefore

given by

S = {0, ±1, ±2, ±3, ±4}.

The critical values {−4, 4}, a subset of the state space, are called absorbing states;

the remaining intermediate states S∗ = {−0, ±1, ±2, ±3} ⊂ S are called transient

states. Eventually the accumulated information leaves the transient states and is

captured by one of the absorbing states. That is, the probability of absorption is 1.

The states and the probabilities for moving up or down, that is, the transition

probabilities (defined properly later), can be conveniently presented in matrix

form (Equation (1.2)). The rows of the matrix display all states, in our exam-

ple −4, −3, . . . +3, +4, and are represented by rows 1, 2, . . . , 9, respectively; and
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similarly for the columns. This matrix (the entries within the brackets) is called the

transition probability matrix and is denoted by P.

P =

index 1 2 3 4 5 6 7 8 9

state −4 −3 −2 −1 0 +1 +2 +3 +4

1 −4 1 0 0 0 0 0 0 0 0

2 −3 .7 0 .3 0 0 0 0 0 0

3 −2 0 .7 0 .3 0 0 0 0 0

4 −1 0 0 .7 0 .3 0 0 0 0

5 0 0 0 0 .7 0 .3 0 0 0

6 +1 0 0 0 0 .7 0 .3 0 0

7 +2 0 0 0 0 0 .7 0 .3 0

8 +3 0 0 0 0 0 0 .7 0 .3

9 +4 0 0 0 0 0 0 0 0 1

.

(1.2)

Each cell, pij, of this matrix represents the transition probability of going from

state si to state sj. For example, row 5 reflects the transition probabilities from the

neutral state (state 0) to either the state one step up (to state +1 from column 5 to

column 6 with probability .3); or remaining in neutral (with probability 0); or to

the state one step down (to state −1 from column 5 to column 4 with probability

.7). The remaining rows are defined in a similar manner.

Three possible realizations of the information accumulation process X, also

called sample paths or trajectories, are

trial 1 (0, +1, 0, −1, −2, −3, −4, −3, −4)

trial 2 (0, +1, +2, +3, +2, +3, +4)

trial 3 (0, −1, 0, −1, −2, −1, −2, −3, −4, −3, −4)

In the first trial, the first amount of information gives evidence for choosing

option A and the state changes from neutral to a value that moderately favors A

(+1). However, the evidence is not sufficiently strong to decide. The next amount

of information favors B, producing an evidence step back to neutral. The process

continues until one of the critical values is reached, at which point the respec-

tive response is chosen, i.e., as soon as Xn = θA = +4 or Xn = θB = −4.

In the case of trial 1, the evidence is sufficiently strong to make a decision in

favor of B after the eighth sample. In the second trial there was enough informa-

tion accumulated in favor of B after the sixth sample; in the last trial there was

sufficiently strong evidence to make a decision in favor of B after the tenth sam-

ple. For the last example, the cumulative amount of information at each time is

X0 = 0; X1 = −1; X2 = 0; X3 = −1; X4 = −2; X5 = −1; X6 = −2; X7 =

−3; X8 = −4; X9 = −3; X10 = −4.

In the subsequent sections we will provide many relevant mathematical con-

cepts that are related to the probabilistic modeling of decision-making. In any

modeling problem, it is of paramount importance to underline the mathematical

underpinnings of the model. This is necessary to see exactly how our assumptions

about the decision-making processes are interpreted in mathematical formalism.
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This will also help to find the pitfalls of such models. Apart from a rigorous mathe-

matical theory, we will also discuss tools that can be helpful for practitioners. Most

of these tools are standard to mathematicians, but may not be as well known to

math users, hence their inclusion in this chapter. In the next section we will discuss

the notion of Markov chain, which is the set-up for most discrete decision-making

models.

1.3 Markov Chains

In this section we will formalize and extend the ideas discussed in sub-

section 1.2.2. As indicated above, in many modeling problems, one deals with

sequences of random quantities

X1, X2, . . . , Xn, Xn+1, . . .

whose values are revealed with the time progress. The most basic situation is

about a sequence of independent quantities. This means that a full knowledge of

X1, . . . , Xn does not influence the distribution of the variable Xn, or more precisely,

Pr
[

Xn = sn|Xn−1 = sn−1, . . . , X1 = s1

]

= Pr [Xn = sn ] . (1.3)

Here we use the notation Pr [A|B] to denote the conditional probability1. Note

that the equality (1.3) indicates that the extra information provided by Xn−1 =

sn−1, . . . , X1 = s1 has no bearing on predicting the value of Xn. The prover-

bial tossing of coins is perhaps the most well-known example of such processes.

The sequence ξ1, ξ2, . . . discussed in the previous section is an example of such a

sequence.

The theoretical simplicity is one of the appeals of such processes. However, in

many real-world situations, one needs to deal with processes in which the distri-

bution of the quantity Xn at time n somehow depends on that of the history of the

process. As a motivating example, consider the following situation. Let Pd denote

the price of a unit of the stock of company C on the dth day of the year. It is

intuitively clear that the sequence P1, P2, . . . does not behave as a sequence of

independent quantities. In fact, one expects the value Pn+1 to be highly correlated

with the values of Pm, at least for values of m close to n, even though this depen-

dence is not deterministic. In other words, the knowledge of the value of the stock

on days d = 1, . . . , n is relevant for predicting its value on day d = n + 1. Here is

one way of formulating this property. We assume that the value Xn of the sequence

at time n is given by

Xn+1 = F(Xn, . . . , Xn−k, Sn),

where Sn is a random seed, that is, a source of randomness independent of the

sequence Xm. For instance, in the example of the random walk described in the

previous section, we have

1 Recall that the conditional probability of A given B is defined by the ratio Pr [A|B] =

Pr [A ∩ B] /Pr [B] for Pr [B] > 0.
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Xn+1 = Xn + ξn+1.

In this example, the step taken at time n + 1 is the random seed involved in

determining the position of the chain at time n + 1.

Note that we have postulated that the values of X1, . . . , Xn−k−1 do not directly

affect the value of Xn+1. In other words, the system has a limited memory.

A particularly important case is when k = 1. In this case, Xn depends on Xn−1

and the random seed Sn, but does not depend on the “older history” consisting of

the values Xn−1, . . . , X1. A succinct (although not precise) description is that the

only part of history relevant to predicting future is the current state. In the next

section we will make this notion more precise.

1.4 Markov Property

We will begin with the formal definition of Markov chains. We will then

proceed to some examples.

Definition 1.1 Let S be a finite set. A sequence X1, X2, . . . of random variables

which take values in S is called a Markov chain if for all n ≥ 1 and all s1, . . . , sn ∈ S

we have

Pr
[

Xn = sn|Xn−1 = sn−1, . . . , X1 = s1

]

= Pr
[

Xn = sn|Xn−1 = sn−1

]

.

(1.4)

This condition is often referred to as the Markov property. Let us compare

(1.4) to (1.3). Suppose that the elements of S correspond to the states of a sys-

tem that evolves with time, in that we think of Xn as the state of the system at

time n. Note that we have implicitly assumed that the time is discrete. Later we

will consider analogous situations in which the time is assumed to be continu-

ous. In (1.3), the entire history of the past is considered to be irrelevant for the

prediction of the future. In (1.4), however, we are assuming that the value of

Xn may depend on the past through its current value. Note that the information

given by

Xn−1 = sn−1, . . . , X1 = s1

describes the full history of the system up to time n − 1. The Markov prop-

erty simply states that the distribution of Xn only depends on its past inasmuch

as it determines the value of Xn−1. In other words, the history of the system

prior to time n − 1 is only relevant through the value of Xn−1. As the system

evolves with time, all the history except for the current state is erased. To study

a Markov chain we will need to work with the transition probabilities defined

next:
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Definition 1.2 The transition probabilities of the Markov chain (Xn) are defined

by

p
[n]
ij = Pr

[

Xn = j|Xn−1 = i
]

.

In most of the applications in decision theory, we work with Markov chains that

are time-homogeneous. This condition means that the transition probability p
[n]
ij

does not depend on the time n in which the transition is happening. In such cases,

the superscript n is suppressed and the shorthand notation pij will be used.

Given a time-homogeneous Markov chain, a systematic way of keeping track of

the transition probabilities is to put them in an N × N matrix, where N denotes

the number of states. From now on, we will always describe a time-homogeneous

Markov chain with N states s1, . . . , sN by an N × N matrix

P = ( pij)1≤i, j≤N

where pij denotes the transition probability of the chain from state si to state sj.

The matrix P defined above is called the transition matrix of the Markov chain.

For instance, pii is the probability that the Markov chain stays put, given that it is

at state si. In the following theorem, we sum up two of the fundamental properties

of the transition matrix.

Theorem 1.3 The transition matrix P of any Markov chain satisfies the following

two properties:

1. The transition probabilities are non-negative, that is, for all 1 ≤ i, j ≤ N,

pij ≥ 0.

2. Each row adds up to 1, that is, for 1 ≤ i ≤ N, we have

N
∑

j=1

pij = 1.

The first property is obvious. Let us explain the second property. Note that the

entries in the ith row of P indicate the probabilities of making a transition from a

fixed state si to one of the other states sj, where j could vary. Because exactly one

of these transitions will happen, the law of total probability implies that the sum of

respected probabilities is 1, that is

N
∑

j=1

pij =

N
∑

j=1

Pr
[

Xn = j|Xn−1 = i
]

= 1.

A matrix with these two properties is called a stochastic matrix. So, the transition

matrix of any Markov chain is a stochastic matrix. Conversely, it is easy to see that

if P is a stochastic matrix, one can define a Markov chain with transition matrix

P. Note that the same cannot be said about the columns. In some of the examples

below we will encounter Markov chains where the sum of entries of a column is

not equal to 1.

www.cambridge.org/9781009045407
www.cambridge.org

