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Proofs and Models in Philosophical Logic 1

1 Context
As far as academic disciplines go, logic is strange. In the western academy,
its roots go back to Aristotle, to Euclid, to the Stoics, through medievals, the
Arabic world, and into a flowering complexity in the nineteenth and twentieth
centuries, as philosophers and mathematicians grappled with understanding the
power and limits of deductive reasoning. The field we now know as modern
logic took root in the project of systematising and securing the foundations of
mathematics1 and in giving an account of the relationship between those math-
ematical theories and our experience of the world around us. In the twentieth
century, new connections emerged with the nascent fields of linguistics, digital
systems and computer science. There is no way that an Element on the use of
proofs and models in philosophical logic could do justice to anything more than
a tiny fragment of this sprawling edifice.2

So what small fragment of the discipline of logic will this Element address?
As the title states, our focus is philosophical logic and the twin roles of proofs
and models in the development of logic. The philosophical concern will also
be twofold: we will reflect on the application of logic to some questions in
philosophy and, at the same time, consider a philosophical reflection on the
discipline of logic itself. Philosophical logic provides both a set of sensibilities
and processes and tools for application in philosophical discourse (among other
kinds of discourse), and at same time, it is a site of philosophical reflection. We
will maintain these dual perspectives on our topic throughout this Element.

In this first section, I set the scene by way of an introduction to how we can
use the different tools of proofs and models to form judgements about logical
validity and invalidity. Then I outline how attention to proofs and models plays
a role in some of the current debates in philosophical logic, concerning the
semantic paradoxes and vagueness. I then end the section by looking ahead to
the argument of the remainder of the Element.

1.1 Proofs and Models
There are many ways to look at logic and the constellation of concepts that
logicians have attempted to analyse using proofs and models. One way to do

1 J. Alberto Coffa’s The Semantic Tradition from Kant to Carnap (1993) tells the compelling
story of the growth of modern logic beyond its Aristotelian bounds as Bolzano, Weierstrass and
others attempted to make sense of the mathematically important notions of convergence and
continuity.

2 So I will not cover the rich tradition of proof complexity, Gentzen’s consistency proof for arith-
metic, the connections between proof search and decidability and many more interesting topics
in proof theory. Neither will I discuss a great deal of model theory, such as significant meta-
theoretical results including compactness, cardinality of models or ultrapowers, and other model
construction techniques. This Element is only so long.
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2 Philosophy and Logic

this is to focus on the production and the evaluation of argumentation, reasoning
and inference. Let’s start with a simple example, involving two mathematicians,
who are reasoning about some newfangled binary relation R they are exploring.
They have discovered that the relation R is transitive (i.e., for any objects x, y
and z if R relates x to y and R relates y to z, then R relates x to z too, so is
older than is an example of a transitive relation, while is a parent of is not)
and symmetric (if R relates x to y, then R relates y back to x too, so neither is a
parent of nor is older than are symmetric relations but is a sibling of is), and
finally, the relation is directed (for each object x, there is some object y where
R relates x to y, so, on the collection of non-negative natural numbers (natural
numbers for short) 0,1,2, . . ., the relation is smaller than what is directed, since
for every number x we can find some whole number y where x is smaller than
y, but the relation is larger than what is not directed if we restrict our attention
to the natural numbers. There is no natural number y where 0 is larger than y).

So our two mathematicians agree that this newfangled relation R is transitive,
symmetric and directed. One of our mathematicians exclaims: ‘The relation
R is reflexive, too!’ (A relation R is reflexive if, for every object x, R relates
that object to itself ). Our second mathematician asks: why is that? The first
responds:

(1) R is transitive. It’s symmetric. It’s directed. It must be reflexive, too!

The second mathematician doesn’t see why this is the case, so they ask for the
reasoning to be spelt out. Can the leap from the premises to the conclusion be
broken down into smaller steps? It can. Our quick thinker responds:

(2) Take an object a. Since R is directed, there is some object b where R
relates a to b. Since R is symmetric, R also relates b to a. Now, R relates
a to b and R relates b to a, so since R is transitive, R relates a to a. So
we have just shown that for any object a at all, R relates a to itself. That
is, R is reflexive.

This elaboration is one way to spell out the jump from the premises to the con-
clusion. It is what we call a proof. It fills out that large jump in thought in
terms of smaller steps. In this case, the smaller steps involve the applications
of agreed-upon definitions (unpacking the definitions of the terms reflexivity,
transitivity, directedness and symmetry), the operations of individual logical
concepts like the universal and existential quantifiers (in the concept of direct-
edness, e.g., for every x, there is some y where R relates x to y), and other logical
concepts like conjunction (the and in the definition of transitivity) and condi-
tionality (the if in the definitions of transitivity and symmetry). If you were
to question this proof at any of the steps in the explanation, it would seem to
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Proofs and Models in Philosophical Logic 3

be a very different problem than not understanding a large leap in thought. It
would be a problem of understanding the concepts in use and not a problem
of understanding how those concepts are combined. (That is the idea, anyway.
Exactly how proofs work, and what options we have in understanding them is
the topic of the next section.)

Proofs are one side of the logical coin. Models are the other. To explain
models, we might consider another possible transition in thought: suppose our
mathematicians have another newfangled relation S, and they have concluded
that S is transitive and symmetric, but they do not know whether S is directed
or not. They wonder, does it follow from these two properties (transitivity and
symmetry) that S is reflexive? We can see that the reasoning supplied previ-
ously concerning R does not apply in the case of S, since we do not know that
S is directed. But having one potential proof that doesn’t work does not mean
that there isn’t another proof that does. Is it the case that when a relation S is
symmetric and transitive, then it must also be reflexive? Our mathematicians
think for a while, and sketching some ideas on a blackboard, they draw the
following diagram:

This diagram represents a way a relation S could be. Each dot is a different
object in the domain of the relation, and a line connecting dot x with dot y
indicates that S relates object x to object y. By design, the relation depicted is
symmetric, since if there is a line connecting x with y it is line that connects y
with x. We can see, too, that whenever we can get from x to y and from y to
z by lines, there is a direct line from x to z. This holds even in the case where
we can get from x to y and back – whenever there is a line from x to anywhere
at all, there is a line looping around from x to itself. So the relation depicted
here is transitive too. However, it is not reflexive because we have an isolated
dot in our diagram. This lonely object is not a counterexample to the claim of
symmetry or of transitivity for S, but it shows that if S were like this, it would
not be reflexive. We have a counterexample to the rule that symmetric and
transitive relations must be reflexive.

This counterexample is a model. It is not a claim about how the origi-
nal relation S is. It is a sketch, a representation, showing that if we want an
explanation why a relation S is reflexive, we cannot appeal merely to its transi-
tivity and its symmetry, since the argument breaks down in circumstances like
those depicted in this model. A counterexample is a barrier through which our
argument cannot pass.
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4 Philosophy and Logic

Here, in a nutshell, we have the distinction between proofs and models. For
the first argument, we have provided a proof, leading from the premises to the
conclusion, and for the second, we have provided a counterexample, a model
that renders the premises true and the conclusion false.3

The proofs and models we have seen so far are relatively simple, involving
reasoning with the quantifiers all and some and familiar logical connectives
like if and and. There are important questions about the role of these concepts
in our argumentation and in our construction of proofs and models. There is
broad agreement that these quantifiers and connectives are important. There is
less agreement over whether there is anything categorically distinctive about
those concepts.4

� �

However, there are concepts other than the familiar connectives and quantifiers
that have proved important for philosophical logic, and which are amenable to
treatment by way of proofs and models. One example is provided by modal
concepts, such as possibility and necessity. However, the proofs and models
appropriate for modal operators seem qualitatively different to the models we
have seen so far. They do not just represent a way things could have been but
also represent more than one such way that things could be. To see how they
arise, consider the difference between two different arguments:

(3) It’s possible that either p or q. So either it’s possible that p or it’s
possible that q.

We can fill in this reasoning into a proof in the following way:

(4) Since it’s possible that either p or q, we grant some possibility where
either p or q holds. Suppose it’s p. In that case, we can conclude that
(back where we started) it’s possible that p, and so it’s either possible
that p or it’s possible that q. On the other hand, suppose that the pos-
sibility we granted makes q hold. In that case (also, back where we
started), it’s possible that q, and again, either it’s possible that p or it’s
possible that q. So, in either case, it’s possible that p or it’s possible that
q, and we’re done.

3 Distinguishing validity as defined by way of proofs and validity defined by way of models was
a great conceptual advance in the twentieth century. Consult Zach (1999) for a discussion of the
early days of that development of the distinction.

4 There is extensive literature attempting to characterise the logical constants from other concepts.
We will not explore it here. Gila Sher’s The Bounds of Logic is a good place to start (1991).
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Proofs and Models in Philosophical Logic 5

In this proof, we broke down the leap from premise to conclusion into smaller
steps, using more fundamental principles governing possibility and disjunction.
This is a good candidate for being a proof.

Suppose, on the other hand, we tried a similar argument, with necessity in
place of possibility.

(5) It’s necessary that either p or q. So either it’s necessary that p or it’s
necessary that q.

This argument is less convincing. We can propose a model as a counterexample.

(6) Suppose we have a range of possibilities, where some of them (not all)
make p true, and the all the others (again, not all of possibilities) make
q true. In that case, in each possibility, we have either p or q – so from
the point of view of any possibility at all, it is necessary that either p or
q. Nonetheless, we don’t have that it is necessary that p (since in some
possibilities, p fails), and we also do not have that it is necessary that q
(since in other possiblities, q fails). So, in any possibility in our model,
we do not have either that it is necessary that p or that it is necessary
that q. So this model, at any possibility, the premise is true, and the
conclusion is not.

Modal reasoning works just like the other reasoning we have seen. Valid argu-
ments can be broken down into proofs, while invalid arguments can be given
models as counterexamples. The models have a richer structure than the mod-
els we saw at first. We used not only a representation of one way that things
might be but also a range of such representations, a system of different possible
worlds.

There are many more concepts that can be rigorously explored with proofs
and models, like the identity predicate; definite and indefinite descriptions;
quantifiers (over objects) beyond the existential and universal quantifier; quan-
tifiers ranging over other domains, such as functions, propositions or properties
and much more. However, this will be more than enough to be going on with
for what follows.

1.2 Paradoxes
As soon as the field developed accounts of proofs and models – in fact, before
these tools took distinct shapes – some natural questions arose. How do we
evaluate those tools? Do they distinguish good and bad arguments correctly
(whatever that would mean), or should the main candidates for the correct
account of proofs or the correct account of models be revised or rejected? Some
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6 Philosophy and Logic

of the most active revisionary arguments concerning proofs and models have
involved different kinds of paradoxes. After all, a paradoxical argument is one
where the premises seem true, the argument seems valid and the conclusion
seems false. If we want to find a good reason to take some argument that is
traditionally thought to be valid to be, in fact, invalid, then the paradoxes are
where we should look.

Example 1: The liar paradox
Consider this sentence, which says of itself that it is not true.

(7) Sentence (7) is not true.

It seems that we can reason like this. Suppose (7) is true. Then, since (7) says
that (7) is not true, then it would follow that (7) is not true, which would contra-
dict (7) being true. In other words, if (7) is true, we have a contradiction. This
means that (7) is not true, since we reduced the supposition that (7) is true to a
contradiction. We’ve refuted it. But this means that we have proved that (7) is
not true and that is what (7) itself says. So we’ve proved (7). It’s true. And so,
it isn’t. We have proved a contradiction.

This is the liar paradox, one example of a semantic paradox, and a paradox
of self-reference.5 As we will see in the next section, we have used very few
logical principles in this line of reasoning, and it very much looks like we have
made some kind of mistake, though it has proved very difficult to locate the
mistake to everyone’s satisfaction. For some, the semantic paradoxes like the
liar have been seen as reasons to curtail our rules of proof for the logical con-
nectives in some way or other, so as to stop the contradictory conclusion or to
render the contradictory conclusion palatable. For others, the fact that logical
principles like these are involved in the proof means that the problem must lie
elsewhere, either in the so-called definition of the liar sentence (say, we attempt
to ban self-reference) or to say that despite appearances, the logic of the truth
predicate cannot satisfy the rules used here in the derivation of the paradoxes.
There are many different kinds of response to the liar paradox, and we will dis-
cuss a representative sample of these in the coming sections, since doing so will
give us a range of perspectives on what we are doing when we use the logical
tools of proofs and models.

5 Another example, which we will also consider, is Curry’s paradox, which uses the conditional,
where the liar uses negation. Pick some statement p. Consider c, the class of all classes x where
if x is a member of itself, then p. Suppose c is a member of itself. Then, it follows that if c is a
member of itself, then p. So, combining those two facts, we have p. In other words, we have just
proved that if c is a member of itself, then p. So, it follows that c is a member of itself. Again,
putting these together, we have proved p. And we made no assumption about p at all.
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Proofs and Models in Philosophical Logic 7

Example 2: The sorites paradox
Consider a colour strip of colour, shading evenly from red on the left to yellow
on the right. Let’s divide the strip up into 10 000 evenly sized tiny patches, from
left to right, labelled 1 to 10 000. For each number n from 1 to 10 000, consider
the claim that patch number n looks red (to me). The first such claim, ‘patch 1
looks red (to me)’, is true. The last such claim, patch 10 000 looks red (to me), is
false. The claim ‘if patch 1 looks red to me, so does patch 2’ also seems true, not
just because both patches look red but also because they look indistinguishable
to me. This generalises: three distinct features conspire to make it that each
claim of the form ‘if patch n looks red to me, so does patch n + 1’ seems just
as true. First, the strip shades evenly from red to yellow, with no sharp changes
in observable colour. Second, we chose very many subdivisions, so each patch
differs from its neighbours by at most a tiny difference, and third, my powers of
visual discrimination have their limits. So the premises of this argument seem
true:

(8) Patch 1 looks red to me.

If patch 1 looks red to me, so does patch 2.

If patch 2 looks red to me, so does patch 3.
.

.

.

If patch 9 999 looks red to me, so does patch 10 000.

Therefore, patch 10 000 looks red to me.

From these premises, we can draw the conclusion that patch 10 000 looks red
to me, using one very simple principle of logic, the inference rule of modus
ponens, which takes us from a conditional claim of the form if A then B and
its antecedent A to its consequent, B. Unfortunately, for us, we seem to have
a logically valid argument from premises that seem true to a conclusion that
seems false.

� �

If we wish to find a counterexample to the validity of the sorites argument, we
need to find some model in which the premises hold and in which the con-
clusion fails. If there is no such counterexample, then either we grant that the
argument is valid or we reject the constraint that invalidity must be witnessed
by a model as a counterexample. Classical ‘two-valued’ logical systems have
proved difficult to adapt to this task. A two-valued model will assign ‘true’ or
‘false’ to each sentence ‘patch n looks red to me’, which will involve assign-
ing either ‘true’ to each such claim (so this model represents the whole strip as
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8 Philosophy and Logic

looking red to me) or ‘false’ to each claim (so the model represents the whole
strip as not looking red to me), or there are two adjacent patches, and the model
represents one as looking red to me and the other as not looking red to me. But,
as we said, the set-up is designed to make each patch indistinguishably differ-
ent from its neighbours. So, if that is unpalatable, a natural reaction involves
expanding the picture of semantic evaluation to allow for more than the two
values of ‘true’ and ‘false’: logics with truth-value gaps or a whole panoply
of degrees of truth might provide ways to understand the sorites paradoxes. In
Section 3, we will examine options for the sorites paradox, as well as other
reflections on models that have proved fruitful in philosophical logic in recent
decades.

1.3 The Plan
The semantic paradoxes and the sorites paradox are two examples of paradoxes
over which a great deal of ink has been spilt in recent decades. The philo-
sophical literature concerning the paradoxes provides one entry point – among
many – to the different approaches to understanding the foundations of logical
consequence, and this is our entryway into the broader landscape of the use of
proofs and models in philosophical logic. The paradoxes are sites where what
seemed for all the world to be fundamental principles about proofs and about
models come into tension and give rise to what seem to be absurd conclusions.
Different proposals for revising those fundamental principles or for defusing
the tension provide different approaches to understanding these principles of
logic, and they will provide a suitable set of lenses through which to view key
ideas in logic as they have developed.

� �

In Section 2, we will discuss logic from the standpoint of proof, giving a quick
introduction to the kinds of techniques philosophical logicians have adopted
in the study of proof and its application to issues in semantics, epistemology
and metaphysics. In this section, we will keep an eye on the kinds of responses
people have made to the semantic paradoxes, as these paradoxes provide ample
motivation for us to inquire into the costs and benefits of different fundamental
proof-theoretical principles. Then, in Section 3, we will do the same thing for
models, introducing not only the debate over the applicability of the standard
two-valued ‘classical’ semantic picture in the light of the paradoxes, but also
our sights that will involve discussions of other kinds of models of use in phil-
osophical logic, such as models featuring possible worlds, which have proved
so useful, and so controversial, in giving an account of the meanings of modal
expressions.
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After those two sections, we will wrap up with Section 4, in which we explore
not only the ways that these tools are used in the discussions of the paradoxes
but also some other natural questions, including the relationship between proofs
and models themselves. In particular, we will ask which proofs and models
should be taken to be fundamental. But, first, let us turn our attention to proofs.

2 Proofs
Let’s start with the proof labelled (2) on page 2. That is a proof that R is reflex-
ive. It has three premises: R is directed, R is symmetric and R is transitive.
It lays out a path from those premises to the conclusion, leaving nothing out.
The aim of a proof is not just to convince us that some conclusion is true but
also, in some sense, to make explicit how that conclusion follows from the
premises.

Notice that this proof does not just start from the premises and lead to the
conclusion, with each intermediate step following from the ones granted before
it.6 There are some other important features of our reasoning that are worth
examining. First, our proof includes an imperative: ‘take an object a’. This
sentence is not a premise, nor is it a conclusion, and it is not another statement
that follows from the premises. It is an invitation. It cannot be true or false. We
cannot assert or deny it. Second, the term ‘b’ in the proof also has an interesting
status. We moved from the claim that R is directed (so, in particular, there must
be some object to which R relates a) to calling one such object b. The fact that
R relates a to a given object b does not logically follow from the claim that R is
directed. R could be directed without R relating a to this particular b (whichever
b it happens to be).7 So much more is going on in this proof than simply working
out conclusions from things we have granted. There are different steps where
objects are given names, and speech acts, other than asserting, are involved
as well. Proofs have complex structure. A crucial constraint, though, is that a
proof is not simply a statement of the premises and the conclusion – at least,
not in most cases. To prove some conclusion C from some premises P1, . . . ,
Pn, you must somehow trace the connection from P1, . . . ,Pn to C.

6 Proofs with that direct ‘linear’ structure Hilbert Proofs. We will see these in the next section.
7 If you find this puzzling, think of a concrete case. I have a son. As a matter of fact, Zachary is

my son. The fact that Zachary is my son does not follow as a logical consequence of the fact
that I have a son because there are other ways I could have had a son, other than Zac. Similarly,
if R relates a to some object, in any particular circumstance in which that is true, we could call
that object b. Given that choice, it would still not follow that in every circumstance where R
relates a to something, that R must relate a to that object b. It might have related a to some other
object instead.
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10 Philosophy and Logic

2.1 Proof Structures
What kind of structure can a proof have? How can such connections be made,
leading from premises to conclusions? In philosophical logic, over recent
decades, the focus of research has not been on any general overarching theory
of the structure and properties of proofs as such.8 We have seen one example,
but in the study of proofs and the formal development of proofs through the
years, formal accounts of different kinds of proofs have been represented in
many different ways, each with different costs and benefits.

Let’s start with the standard logical connectives such as ∧ (conjunction), ∨
(disjunction), → (the conditional) and ¬ (negation) and the quantifiers such as
∀ (universal) and ∃ (existential) and consider proofs for statements exploiting
the concepts in this vocabulary. As mentioned previously, a simple analysis of
proofs is given by the structure of Hilbert Proofs. A Hilbert Proof from prem-
ises P1, . . . ,Pn to conclusion C is a list of formulas, ending in the conclusion C,
and each of them is (a) one of the premises Pi, (b) one of the axioms or (c) a for-
mula that follows from earlier formulas in the list by way of the rules. Whether
something counts as a Hilbert proof depends on the choices of axioms and rules.
If we focus just on the connectives → and ¬, we can provide a very simple
Hilbert proof system for propositional logic. There are three axiom schemes:9

WEAKENING: A → (B → A)
DISTRIBUTION: (A → (B → C)) → ((A → B) → (A → C))
CONTRAPOSITION: (¬B → ¬A) → (A → B)

These are schemes rather than individual formulas because we count any for-
mula that fits the shape as an instance of the axiom. So, for example, p → (q →

p) and p → (p → p), and ¬(p → q) → (p → ¬(p → q)) are each instance of
the WEAKENING axiom scheme. Our Hilbert proof system has just one rule:

MODUS PONENS: A → B, A =⇒ B

We understand the rule like this: if, in a proof, we have already written down
A → B and A (in either order), then we can add B to our proof. With this
choice of axioms and rules, we can construct proofs in our axiom system

8 See some of Dag Prawitz’s papers to see what could be done in this direction (1973, 1974,
2019).

9 Hilbert proofs are named after German mathematician David Hilbert (1862–1943), for whom
the axiomatisation of mathematics, with a precise formally specified notion of proof, was a
central task to the foundation and justification of mathematical methods (see Sieg, 2013; Zach,
2019).
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