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1 Introduction

Some scientiûc explanations involve mathematics. Within mathematics, some

proofs are said to explain. Do these practices tell us anything about the nature of

explanation or mathematics? In this Element this daunting topic is divided into four

parts. First, can any traditional theory of scientiûc explanation make sense of the

place of mathematics in explanation? Each traditional theory that is discussed is

a monist theory because it supposes that what makes something a legitimate

explanation is always the same (Section 2). Second, if traditional monist theories

are inadequate, is there some way to develop a more ûexible but still monist

approach that will clarify how mathematics can help to explain (Section 3)? After

a consideration of the limitations of some recent ûexible monist accounts, the

options for a pluralist approach are examined. What sort of pluralism about

explanation is best equipped to clarify how mathematics can help to explain in

science and in mathematics itself?While a pluralist can allow that different sorts of

explanations work differently, it still remains important to clarify the value of

explanations (Section 4). Finally, how can the mathematical elements of an explan-

ation be integrated into the physical world? Some of the evidence for a novel

scientiûc posit may be traced to the explanatory power that this posit would afford,

were it to exist. Can a similar kind of explanatory evidence be provided for the

existence of mathematical objects, and if not, why not? (Section 5).

In his 2001 paper “Mathematical Explanation: Problems and Prospects”

Paolo Mancosu argues that “mathematical explanations can be used to test

theories of scientiûc explanation and that an account of mathematical explan-

ation might have important consequences for the philosophy of science”

(Mancosu 2001, p. 102). This Element builds on this point by considering

how various approaches to scientiûc explanation can make sense of both (i)

explanatory proofs in pure mathematics and (ii) scientiûc explanations that turn

essentially on mathematical resources. In Sections 2–4 I argue that the best

option for clarifying how these explanations work is pluralism about explan-

ation. This means that different explanations employ different explanatory

relevance relations when they indicate why some target is the way that it is. In

Section 5 I consider the signiûcance of mathematical explanation for the

interpretation of pure mathematics. I argue that the existence of genuine math-

ematical explanations does not support the existence of mathematical objects

through the use of inference to the best explanation.

My own interest in mathematical explanation can be traced directly to the

pioneering work of Paolo Mancosu (see especially Mancosu 2000, 2001, 2008,

2018).1 I was lucky enough to have Mancosu as the advisor for my 2002

1 A new version of (Mancosu 2018) is currently in preparation.
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dissertation on questions related to the applicability of mathematics. This

Element attempts to follow Mancosu’s call to attend carefully to mathematical

and scientiûc practice in philosophical work. I believe that the pluralism about

explanation that I argue for is consistent with Mancosu’s views, but he may not

agree with the account of what all explanations have in common that I offer here

(Section 4.3).

A draft of this Element beneûtted enormously from comments by SamBaron,

Andre Curtis-Trudel, Marc Lange, and PaoloMancosu. I have unfortunately not

been able to address all of their helpful suggestions here, and they are, of course,

not responsible for any remaining errors or oversimpliûcations of the issues

discussed. I am also grateful to two anonymous referees for their insightful

reactions to the penultimate version of this Element. I hope this Element will

help to introduce new readers to the wonders of mathematical explanation, and

also to inspire new work on this complex topic.

2 The Challenge to Traditional Theories of Scientiûc Explanation

This section starts by introducing ûve principles that are used to test competing

accounts of explanation, and illustrates how these tests work by developing

some standard objections to accounts that emphasize derivation and uniûcation

(Section 2.1). This section also considers three causal accounts of explanation

and argues that they are unable to make sense of the contrast between explan-

ations that merely employ mathematics to represent something else and explan-

ations whose explanatory power is tied more directly to the mathematics

employed (Section 2.2).

2.1 Derivation and Uniûcation

Philosophical investigations of a topic like explanation typically take for

granted some principles about that topic that make it possible to test competing

accounts. This Element takes for granted ûve principles. It supposes that an

account of explanation aims to cover all explanations, including those found in

science and mathematics. As I will argue, many accounts fail to respect the

principles articulated in this section. We can thus use these principles to identify

the problems with various accounts of explanation that have been proposed,

especially when one considers how mathematics ûgures into explanations. Of

course, one may avoid these problems by rejecting one or more of the principles

that are assumed here.

All participants in these debates agree that a scientiûc explanation provides

a reason why something is the case. The target of an explanation may be

something particular, like a speciûc event or state. The target may also be
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something general, like a recurring pattern or phenomenon. A legitimate

explanation of a target indicates why that target is the way it is. This motivates

our ûrst principle for accounts of explanation:

1. There is an important distinction between a description of some target of

explanation and an explanation of that target.

This principle does not deûnitively refute any account, as a defender of any

account is liable to interpret “an important distinction” in their own self-serving

way. However, I will appeal to this principle to help to clarify my reasons for

questioning this or that proposal.2

A closely related principle involves the distinction between the evidence that

some phenomenon has some character and an explanation of that aspect of the

phenomenon. For example, careful paleontological investigations may deter-

mine that the rate of the Earth’s rotation on its axis is decreasing. But additional

accounts of the gravitational interactions between the Earth and the Moon are

needed to explain this change. Our second principle is thus:

2. There is an important distinction between the evidence for some fact and an

explanation of that fact.

The third principle that I will deploy assumes that there is an order to

explanation. If one says that B is the case because of A, then A provides

a reason for B being the way that it is. In some respect, then, A must be more

basic or fundamental than B. In causal explanation, A is partly responsible for

the occurrence of B, and so in this sense is also more basic. If this is right, then it

would be illegitimate to appeal to B when explaining A. One way to summarize

this point is to say that an explanatory relevance relation is asymmetrical: when

A stands in that relation to B, then B does not stand in that very relation to

A. However, the issue is complicated by the fact that an explanation may have

parts. To allow for explanations with parts, our third principle has the following

formulation:

3. (Priority) If A is part of an explanation of B, then B is not part of an

explanation of A.

For example, the mass of the Moon is part of the explanation for why the rate of

rotation of the Earth on its axis is decreasing over time. Our third principle thus

requires that the decreasing rate of rotation of the Earth on its axis is not part of

an explanation of the mass of the Moon.

2 For a recent discussion of this issue, see Taylor (forthcoming).
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Our fourth and ûfth principles help to identify the subject matter of this

Element. This is the special character of some explanations that involve math-

ematics. As we will see later in this section, many philosophers maintain that

some explanations that involve mathematics use the mathematics in a special

way that renders the explanation genuinely or distinctively mathematical.

Following Baker and Baron, I will call such explanations “genuine mathemat-

ical explanations.”3 Of course, not everyone agrees that there are genuine

mathematical explanations. But our fourth principle takes for granted that

genuine mathematical explanations exist and requires that an account clarify

their character:

4. There is a special way that mathematics may appear in a scientiûc explan-

ation that makes it a genuine mathematical explanation.

Our ûfth (and ûnal) principle relates to pure mathematics. One goal of

mathematical activity is to obtain a proof of a theorem. Mathematicians some-

times praise or criticize a proof based on its explanatory power. In certain

contexts, it is thought valuable to explain why a theorem is the case even after

it has been given a proof that is otherwise adequate. Our ûfth principle assumes

that this feature of mathematical practice is legitimate:

5. Some proofs of a theorem explain why that theorem is the case, while other

proofs do not explain why that theorem is the case.4

Combining our fourth and ûfth principles will turn out to be a powerful tool to

criticize some proposed accounts of explanation. Many proposals will fail the

fourth or ûfth test because they do not allow for genuine mathematical explan-

ations or they rule out explanatory proofs. As with the other principles, this does

not provide a deûnitive refutation of these proposals, but it does clarify their

limitations and also why some may reject those proposals.

Much of our discussion will turn on cases where mathematics appears in an

explanation. Our ûrst case is an answer to the question, “Why is the shadow cast

by the Ohio Stadium ûagpole 49 m in length at 3 p.m.?” An explanation of this

state may appeal to the position of the sun at the time and to the height of the

ûagpole. But this information does not seem sufûcient to explain the length of

the shadow, as there is a deductive gap between the statements that provide this

information and the statement characterizing the target of the explanation:

3 See especially Baker (2005), Lange (2013), and Baron (2019).
4 Contrary to the claims of D’Alessandro (2020), nobody assumes that all explanations in pure

mathematics are proofs. See especially Mancosu (2001) and Lange (2018b). I restrict my focus

here to proofs to make the discussion tractable.
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1. At 3 p.m., the light rays from the sun hit the top of the ûagpole at an angle of

45°.

2. The height of the ûagpole is 49 m.

Therefore, the length of the shadow is 49 m.

To close this deductive gap, we need to add a statement from geometric optics

that involves trigonometry:

3. The length x of the shadow cast by any pole of height ymwhen the light hits

at an angle of 45° satisûes the following equation: tan 45° ¼ x m=y m.

As tan 45° = 1 and y = 49, it follows that x = 49 (Figure 1). So for this type of

case, at least, the role for the mathematics in the explanation is to permit the

deduction of a statement characterizing the explanatory target.

Although the idea has a long history, Hempel is the philosopher who did the

most to argue that a necessary condition on an important kind of explanation is

that the explanation provide a deduction of a statement describing the explana-

tory target. Hempel called such explanations “deductive-nomological” (D-N)

explanations. The term “nomological” indicates an additional necessary condi-

tion on such deductions: they must deduce their target statement through the

essential use of a scientiûc law. Our statement 3 would be the law for this

D-N explanation. This is Hempel’s way of distinguishing an explanation from

a description.

Figure 1 The ûagpole and the shadow.
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Hempel offered different motivations for the need for laws in explanations.

In his famous Aspects of Scientiûc Explanation, for example, Hempel (1965)

says “[(i)] the argument shows that, given the particular circumstances and the

laws in question, the occurrence of the phenomenon was to be expected; and

[(ii)] it is in this sense that the explanation enables us to understand why the

phenomenon occurred.” But in addition “[(iii)] it is in virtue of such laws that

the particular facts cited in the explanans possess explanatory relevance to the

explanandum phenomenon” (p. 337).5 The relationship between (i), (ii), and

(iii) is far from clear. One interpretation of Hempel is that what makes

something explanatorily relevant is that this fact could have been used to

lawfully predict that state in advance. It is this that constitutes our understand-

ing of that state.

The most inûuential objection to Hempel’s D-N account takes for granted

that some laws permit deductions with a troubling sort of symmetry. Our

ûagpole case was in fact introduced into these debates to illustrate one such

troubling case.6 For in addition to the presumably acceptable explanation just

given, the following deductive argument also seems to meet all of Hempel’s

necessary conditions on D-N explanations:

1. At 3 p.m., the light rays from the sun hit the top of the ûagpole at an angle of

45°.

2’. The length of the shadow is 49 m.

3’. The height y of any pole that casts a shadow of length xmwhen the light hits

at an angle of 45° satisûes the equation: tan 45° ¼ x m=y m.

Therefore, the height of the ûagpole is 49 m.

If (3) is a law, then (3’) is also a law. As both arguments are deductively valid,

Hempel seems to lack any principled reason to exclude this explanation. But if

both explanations are granted, then we violate our third principle concerning the

order of explanatory priority. This principle says that if A is part of an explan-

ation for B, then B cannot be part of an explanation for A. But here we have the

height of the ûagpole being part of an explanation of the length of the shadow,

and also the length of the shadow being part of an explanation of the height of

the ûagpole. Thus we face a choice between agreeing with Hempel and main-

taining an order of explanatory priority. Applying our third principle requires

rejecting Hempel’s approach to explanation.

Most philosophers of science have accepted explanatory priority and thus

rejected Hempel’s D-N account as inadequate. By far the most popular

5 The explanandum is the target of the explanation or what is being explained. The explanans is the

explanation itself or what provides the explanation.
6 See Salmon (1989) for extensive discussion of this and other objections to Hempel.
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approach adds a causal condition on explanation, which we consider in

Section 2.2. However, Kitcher offered a different diagnosis of the failings of

Hempel’s approach. He argued that Hempel failed because he tried to assess

explanations individually. The alternative approach that Kitcher pursued is to

evaluate explanations globally based on how well they help to unify or system-

atize a collection of accepted statements: “Science advances our understanding

of nature by showing us how to derive descriptions of many phenomena, using

the same derivation again and again, and, in demonstrating this, it teaches us

how to reduce the number of types of facts we have to accept as ultimate (or

brute)” (Kitcher 1989, p. 432). At any given time in the history of science, there

will be some set of accepted statements K. The “explanatory store” over K will

specify a set of argument patterns that permit some members of K to be derived

from other members of K. An explanation (with respect to this K) will then be

an instance of such an argument pattern. Kitcher adds that an explanation is

legitimate when it appears “in the explanatory store in the limit of the rational

development of scientiûc practice” (Kitcher 1989, p. 498).

To appreciate the explanatory role for mathematics that Kitcher’s approach

creates, it will be useful to introduce a case from pure mathematics.7 As

assumed in our ûfth principle, only some proofs in mathematics are judged to

explain the theorem proven. In Euclid’s Elements the solution to a problem

involves constructing a geometric ûgure using the limited resources licensed by

his postulates, for example to connect any two points by a line or to draw a circle

around a point with the radius of some line. One such problem is to bisect an

angle BAC (Book I, proposition 9; see Figure 2).

The ûrst step to solve this problem is to pick some point on line BA. Call this

point D. A circle centered on A and of radius AD can then be drawn to cross line

CA at a new point E. Radius AD is equal in length to AE. An earlier construction

in Euclid shows how to construct an equilateral triangle on any given line.

Construct such a triangle on line DE, with a third corner F. Finally, connect F to

A. The triangles ADF and AEF are congruent, as they have three sides of the

same length (AD = AE, DF = EF, AF = AF). As congruent triangles have

corresponding angles of the same size, angle DAF = angle EAF, and the

bisection is completed. Let us suppose that this construction not only proves

that every angle can be bisected, but also that it explains why every angle can be

bisected.

A construction procedure like the bisection of an angle can be iterated, and so

it is clearly possible to divide an angle into n equal parts when n satisûes the

equation n = 2m, for some m (n = 2, 4, 8, 16, …). Discussing a case like this,

7 For Kitcher’s own examples from pure mathematics, see Kitcher (1989, p. 424).
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Kitcher notes that “[e]ven when we are interested in explaining a particular

event or state, the explanation we desire maywell be one that would also explain

something quite general, and any attention to the local details may be misguided

and explanatorily inadequate” (Kitcher 1989, p. 427). In this case, one may ask

why an angle can be divided into 64 equal parts. While one proposed explan-

ation would lay out all the steps of the construction, Kitcher’s view is that

a better explanation would connect the 64-part case to all the cases that are

amenable to a uniûed construction procedure. The goal of uniûcation is often

prominent in pure mathematics as well as in many scientiûc cases. In Kitcher’s

terms, this would lead the explanatory store over a K that includes Euclidean

geometry to contain a single argument pattern that covers all divisions of angles

into n parts, where n is a power of 2. The instances of this pattern would then

count as explaining their respective theorems.

More generally, the explanatory store over K is arrived at by identifying the

smallest number of stringent argument patterns that permit the most members of

K to be conclusions of some instance of some such pattern.8 It is not clear if

Figure 2 Bisecting an angle.

8 A stringent argument pattern places substantial conditions on how its instances can be generated.

These conditions are needed to avoid making uniûcations too easy to achieve.
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Kitcher’s procedure for picking out the explanatory store over K is well deûned,

and there are difûcult issues associated with how this procedure is meant to

accommodate scientiûc change. Kitcher does offer an intriguing place for math-

ematics in explanation, though. For it does seem that mathematical theorems are

well suited to unify large numbers of mathematical and nonmathematical claims.

This is clear even from our two cases so far. For both the ûagpole case and the

bisection case, the generalizability of the mathematical result shows how many

similar cases can be treated in a uniform fashion. All the members of K that

involve a shadow being of a certain length can be handled using a single argument

pattern whose crucial premise generalizes (3): The length xmeters of the shadow

cast by any object of height y meters when the light hits at an angle of z degrees

satisûes the equation tan z degrees = x meters / y meters. Similarly, for any

number of parts n = 2m, the complete instructions for how to bisect any angle

into that many parts can be given using (n – 1) iterations of the angle bisection

construction.9

Kitcher also proposed an ingenious way to preserve explanatory priority

using his uniûcationist approach to explanation (Kitcher 1989, p. 484). His

general strategy was to argue that any purported explanatory store E(K) over

K that allowed for troubling symmetrical pairs of derivations would have

redundant argument patterns. So, E(K) could be replaced by a different explana-

tory store E’(K) that would provide a better uniûcation of K by disqualifying

one of the proposed explanations. In the ûagpole case, Kitcher allows for an

argument pattern that derives the height of ûagpoles from lengths of shadows

using our generalization of (3). But he insists that there will be another argument

pattern that derives the dimensions of ordinary objects like ûagpoles and towers

in terms of their origin and development or, as we might put it, their constitu-

tion. The height of the ûagpole can be derived by summarizing how it was

constructed, so that its parts combine to yield an object of this height. If E(K)

has this argument pattern and also has an argument pattern H that derives the

height of the ûagpole based on the length of the shadow it casts, then argument

pattern H only derives statements that can also be derived in some other way.

Thus, an explanatory store E’(K) that drops pattern H and retains the constitu-

tion pattern would mark an improvement.

The powerful role of mathematics in unifying derivations turns out to be

a problem for Kitcher’s approach. We can see this by recalling our ûrst two

principles for an account of explanation: a description is not an explanation, and

evidence for a target is not an explanation of that target. Kitcher is preoccupied

9 As each bisection increases the number of parts by 1, dividing an angle into n = 2m parts requires

n – 1 bisections.
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with the number of stringent argument patterns needed to derive a given set of

claims. Here is a case from geometric optics that Kitcher’s analysis gets

wrong.10 The law of reûection says that when a ray of light hits a reûecting

surface like a mirror, the angle of incidence θi equals the angle of reûection θr

(Figure 3).

Another law of optics is Snell’s law, which concerns refraction: when a light

ray goes from one medium (like air) to another (like water), the direction of the

ray will change or refract. If the new medium is more dense than the old

medium, the angle that the ray makes to the normal axis will decrease so that

θ1 > θ2 (Figure 4).

Snell’s law connects the ratio of the sines of these angles to the ratio between

the so-called refractive indexes n1, n2 of these media:

n1=n2 ¼ sin θ2=sin θ1:

The measured refractive indexes of different media were found to increase with

the density of the media, but no further explanation for why this law obtained

was apparent.11

If we follow Kitcher, then we should adopt an argument pattern as explanatory

if it permits one to treat reûection and refraction together.12 One such argument

pattern deploys Fermat’s principle that a light ray will travel between two points on

the path that minimizes the time of the trip. Both the law of refraction and Snell’s

law can be derived in a uniform fashion from Fermat’s principle. The derivations

take the endpoints of the light ray’s path to be ûxed and vary the point O at which

θ rθ i

Figure 3 Law of reûection.

10 More involved examples of the same kind are used to criticize Kitcher in Morrison (2000). See

also Hafner and Mancosu (2008) for criticisms of Kitcher’s proposal for explanatory proofs.
11 See Nahin (2004) for more on this case.
12 This assumes a set of statements K where there is no way to obtain an explanatory store over

K that lacks this pattern and that scores better on Kitcher’s criteria. Arguably, such a K was

present during Fermat’s time, prior to our current understanding of the nature of light.
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