INDEX

absolute thinking
- connecting to additive thinking, 104–6
 - definition, 96
 - explained, 96–8
 - Titanic example, 104–6
 - wine buying example, 97
addition
- of fractions, 117–19
- repeated addition, 55, 56, 64
addition facts, 54
addition grids, 61–2
additive identity, 59
additive thinking
- car budgeting example, 94–5
- concrete mixing example, 92–3
- connecting to absolute thinking, 104–6
 - definition, 88–9
- distinguished from multiplicative thinking, 91–6
- fruit juice concentrate example, 91–2
- moving to multiplicative thinking, 89–90
- recipe proportions example, 94
- Titanic example, 104–6
al-Khwarizmi, 34, 35
algebra, 34, 35
algorithms, 34
anxiety about mathematics, see mathematics anxiety
associative Law, 78–9
associativity, 78–9
assumptions, 167
automaticity, 51–2, 65
Base 2, 44
Base 7, 44
Base 10, 36, 44, 68
 - definition, 34
Base 12, 69
Base 60, 44
BEDMAS, 76–7
binary notation, 44
calculations, using Roman number system, 36
Calculator Crash, 39–40
calculators, 57, 65
common fractions
- addition of, 117–19
 - definition, 109
 - denominators, 110–11, 117, 118
 - difference from decimal fractions, 124
 - difficulties with, 109, 122–3
 - division of, 121
 - as divisions, 114–15
 - elements of, 110–11
 - equivalent fractions, 118, 119–20
 - improper fractions, 114
 - interpretations and uses, 111–17
 - multiplication of, 120–1
 - numerators, 110–11, 118
 - operations with, 117–19
 - part of a collection, 112–13
 - part of a whole, 111–12
 - as point on a number line, 113–14
 - power of, 116–17
 - proper fractions, 113
 - reciprocals, 121
 - representing ratios, 115–16
 - simplification, 121
 - vinculum, 110
commutativity, 60
co-variation
 - definition, 93
 - in nature, 99–100
 - relative thinking and, 98, 100–2
currency exchange, 83
decimal currency, 68
decimal numbers, naming of, 43
decimal place value, 42
decimals
- difference from common fractions, 124
 - European decimals, 42
- understanding, 123–4
- denominators, 110–11, 117, 118
- discounting, 128–9
dispositions
importance of addressing, 9–10
nature of, 3
source of negative dispositions, 6
towards mathematics, 6–7
Distributive Law, 77–8
distributivity, 77–8
division
by powers of 10, 47
common fractions, 121
division facts, 54–6
equivalent fractions, 118, 119–20
equivalent ratios, 135
estimation, 26–7
checking change from cash purchases, 85
definition, 80
mental computation and, 80–2
European decimals, 42
factors, 55
fractional thinking, move to, 122
fractions
percentages, 126–30
working across three main types, 130–1
see also common fractions; decimals
fuel consumption, 144, 147–8
growth mindset, 13–15, 161–2
Hindu-Arabic number system, history of, 34–6, 86
imperial measurement system, 68, 69
improper fractions, 114
information overload, problem of, 168
irrelevant facts, problem of, 167–8
knowledge of mathematics, gaps in, 4–5
lifelong learning, 12–13
magnitudes, judging, 27–8
mathematical circumstances, analysis of, 3–4
mathematical knowledge, gaps in, 4–5
mathematics
difference from numeracy, 19
reasons for learning, 18
mathematics anxiety
impact of, 8–9
nature of, 8
mathematics difficulties
addressing, 10–15
growth mindset, 13–15
improving number sense, 10–11, 16
lifelong learning, 12–13
Maths Rockx, 58
mental computation
associativity and, 78–9
choosing strategies to aid in, 82–4
definition, 26, 71
distributivity, 77–8
estimation and, 80–2
everyday situations, 72
as important life skill, 73
improving, 74
order of operations, 76–7
overview, 71–3
properties of numbers and operations to assist in, 76–80
reasonableness of answers, 84–5
using number facts in, 75–6
metacognition, 73
metric measurement system, 68, 69
missing information problems, 168–9
multiple representations, 164–5, 170–1
multiples, 55
multiplication
by powers of 10, 46–8
common fractions, 120–1
complicated method, 53
multiplication facts, 54–6
multiplication grids, 62–3
multiplicative identity, 59
multiplicative thinking
car budgeting example, 94–5
concrete mixing example, 92–3
connecting relative thinking to, 102–4
definition, 29, 90
distinguished from additive thinking, 91–6
fruit juice concentrate example, 91–2
nature of, 90–1
multiplicative thinking (cont.)
recipe proportions example, 94
Titanic example, 104–6
multistep problems, 64–5
painting a wall example, 174–6
nominal numbers, 41
notional scales, 157–8
number facts
addition facts, 54
approaches to learning, 57–8
arrays for learning, 64–5
auditing knowledge of, 61–3
learning of, 51–4
multiplication facts, 54–6
power of, 65–8
properties to assist learning, 59–60
reasons for learning, 58–9
using to complete mental calculations, 75–6
number grids, 57
number sense
definition, 10
elements of, 11
estimation, 26–7
improving, 10–11, 16, 32, 48–9, 69, 86, 107, 132, 158, 180
judging magnitudes, 27–8
key ideas of, 25–6
mental computation, 26
numerical relationships, 29
place value, 28
problem solving, 30–1
representational fluency, 29
numbers, naming of, 40–1, 43
numerosity
21st century model, 19
definition, 19
difference from mathematics, 19
everyday examples of use, 20–2
importance of, 23–5
key elements, 20
role of context in, 22–3
numerators, 110–11, 118
numerical relationships, 29
one, properties to assist learning number facts, 59
one-dimensional scale, 154–5
one-to-one correspondence, 136, 137
operations
deciding which to use, 171–3
language of four main operators, 163
order of, 76–7
parameters, 167
percentages, 126–30
restaurant reviews example, 126–7
sale discounts example, 128–9
personal mathematical circumstances
dispositional responses, 6–7
importance of addressing problems, 9–10
knowledge gaps, 4–5
responding to problems, 7
understanding the problem, 4–9
place value
decimals, 42
as element of number sense, 28
as feature of Hindu-Arabic number system, 34, 36
grouping of digits, 40
naming numbers, 40–1
placement of digits in columns, 37–40
Polya’s problem-solving strategy, 3
Step 1: Understand the problem, 4–7, 16, 32, 166–70
Step 2: Devise a plan, 7, 10, 18, 32, 170–6
Step 3: Carry out the plan, 48, 69, 86, 107, 132, 158, 177, 180
Step 4: Look back at what you have done, 177–8, 180
steps, 166
problem solving
considering possible outcomes, 177
deciding what operation(s) to use, 171–3
definition, 160
as element of number sense, 30–1
and growth mindset, 161–2
irrelevant facts, 167–8
language of, 162–3
and life, 160–2
missing information, 168–9
multiple representations, 164–5, 170–1
multistep problems, 174–6
Index 203

not understanding all the information, 169–70
other strategies, 176
skills for, 162–6
thinking mathematically, 165–6
too much information, 168
unfamiliar contexts, 176
working backwards from answer, 173
see also Polya's problem-solving strategy

proper fractions, 113

rates
common rates in everyday life, 142–6
consumption, 143
definition, 142
fuel consumption, 144, 147–8
importance of concept, 142
interest rates, 146
long-term effects, 146–8
speed when driving, 144
unit prices for groceries, 145–6

ratios
deinition, 134
developing understanding of, 136–7
equivalent ratios, 135
fractions representing, 115–16
multiplicative relationships, 135
real-world examples, 138–42
representing, 134–6
scale factors, 153–4
reciprocals, 121
red herrings, 167–8
relative size, 149–50
relative thinking
branding example, 97
connecting to multiplicative thinking, 102–4
and co-variation, 98, 100–2
definition, 96
explained, 96–8
magpies and cyclists example, 100–1
misjudgment of co-variation connections, 100–2

Titanic example, 104–6
wine buying example, 97
repeated addition, 55, 56, 64
representational fluency, 29
Roman number system, 34, 35–6, 45
rote learning, 57–8
rounding, 80–2

scale
bathroom tiles example, 155
definition, 148–9
intervals, 150
not to scale, 157–8
one-dimensional scale, 154–5
reading and interpreting scales, 150–3
relative size, 149–50
three-dimensional scale, 156–7
two-dimensional scale, 155–6
scale factors, 153–4
shortcuts
multiplying and dividing by powers of 10, 46–8
pitfalls of using, 45
simplifying fractions, 121
skip counting, 55, 58, 64
speed when driving, 144
subtraction facts, 54
three-dimensional scale, 156–7
two-dimensional scale, 155–6

working backwards from answer, 173

zero
additive identity, 59
correct name for, 47
as feature of Hindu-Arabic number system, 36, 45
history of, 45
origin, 34
properties to assist learning number facts, 59