Many adults feel that they lack the necessary foundational knowledge in mathematics required to confidently use mathematics in daily life and in their careers. *Making Sense of Number* is a concise introduction to personal and professional numeracy skills, helping readers to become more mathematically competent. It includes relevant content to assist pre-service teachers to improve numeracy for the classroom or to prepare for the LANTITE, as well as support for practising teachers to develop their understanding and skills in numeracy.

Making Sense of Number focuses on number sense as a conceptual framework for understanding mathematics, covering foundational areas of mathematics that often cause concern such as multiplication, fractions, ratio, rate and scale. The authors use real-world examples to explain mathematical concepts in an accessible and engaging way. Learning activities throughout the book help readers self-assess their understanding of the mathematical concepts discussed, and answers to activities are included.

Written by authors with over 30 years’ experience teaching mathematics at primary, secondary and tertiary levels, *Making Sense of Number* is an essential guide for both pre-service teachers and those looking to improve their understanding of numeracy.

Annette Hilton is an Industry Fellow in the School of International Studies and Education at the University of Technology Sydney.

Geoff Hilton is an Honorary Research Fellow at the University of Queensland School of Education.
CONTENTS

Preface ix

Chapter 1 Reflection on personal mathematics experiences and abilities 1
 Introduction 2
 What is my mathematical circumstance? 3
 Understanding the problem: a personal perspective 4
 Been there, done that 7
 Understanding the problem: a research perspective 7
 What is mathematics anxiety? 8
 What is the impact of mathematics anxiety? 8
 Why is it important that teachers address their mathematics knowledge and dispositions? 9
 Addressing mathematics difficulties 10
 Number sense 10
 Lifelong learning 12
 Growth mindset 13
 Conclusion 15

Chapter 2 Mathematics and numeracy: the role of number sense 17
 Introduction 18
 Numeracy: a real-world reason for learning mathematics 18
 What is numeracy? 19
 Some everyday examples 20
 The central role of context in numeracy 22
 Why is numeracy so important? 23
 The key ideas of number sense 25
 Mental computation 26
 Estimation 26
 Judging magnitudes 27
 Place value 28
 Numerical relationships 29
 Representational fluency 29
 Problem solving 30
 Conclusion 32

Chapter 3 The Hindu-Arabic number system 33
 Introduction 34
 A brief history of the Hindu-Arabic number system 34
 Feature number one: place value 36
 Placement of digits in place value columns 37
Naming numbers 40
Decimal place value 42
Feature number two: Base 10 44
Feature number three: zero 45
Some things we should not have learned 45
Multiplying and dividing by powers of 10 46
Conclusion 48

Chapter 4 Number facts 50
Introduction 51
Learning the number facts 51
Addition facts 54
Multiplication facts 54
Approaches to learning number facts 57
Why learn number facts? 58
Properties to assist the learning of number facts 59
Working with zero and one 59
Commutativity 60
Auditing number fact knowledge 61
The addition grid 61
The multiplication grid 62
Arrays for learning number facts 64
Putting it all together: the power of number facts 65
Related systems 68
Conclusion 69

Chapter 5 Mental computation 70
Introduction 71
What is mental computation? 71
Why the focus on mental computation? 73
Using number facts to complete mental calculations 75
Properties of numbers and operations 76
Order of operations 76
Distributivity 77
Associativity 78
Estimation and mental computation 80
Choosing strategies to aid mental computation 82
Is the answer to my mental computation reasonable? 84
Conclusion 86

Chapter 6 Additive and multiplicative thinking 87
Introduction 88
Additive and multiplicative thinking 88
Additive thinking 88
Multiplicative thinking 90
Distinguishing between additive thinking and multiplicative thinking 91
Absolute and relative thinking 96
Relative thinking and co-variation 98
Co-variation in nature 99
Confusing relative thinking 100
Making connections 102
Connecting relative thinking to multiplicative thinking 102
Connecting additive to absolute and multiplicative to relative thinking 104
Conclusion 106

Chapter 7 Fractional thinking 108
Introduction 109
Common fractions 109
Common fractions are versatile 111
Why are common fractions useful? 116
Operations with common fractions 117
Equivalent fractions 119
Multiplying fractions 120
Dividing fractions 121
Some possible reasons for difficulty with common fractions 122
Decimals 123
Working with decimals 124
Percentages 126
Working across the three main fraction types 130
Conclusion 132

Chapter 8 Ratio, rate and scale 133
Introduction 134
Ratio 134
Representing ratio 134
Developing ratio understanding 136
Real-world examples of ratio 138
Rate 142
Common rates in everyday life 142
Long-term effects of rates 146
Scale 148
Relative size 149
Reading scales 150
Scale factor 153
One-, two- and three-dimensional scale 154
Not to scale 157
Conclusion 158
Chapter 9 Problem solving 159

Introduction 160
Problem solving and life 160
 Problem solving and growth mindset 161
Contributing skills for problem solving 162
 The language of problem solving 162
 Multiple representations 164
 Thinking mathematically 165
Polya's Step 1: Understand the problem 166
 Irrelevant facts (red herrings) 167
 Too much information 168
 Missing information 168
 Not understanding all the information 169
Polya's Step 2: Devise a plan 170
 Using multiple representations 170
 Deciding what operation(s) to use 171
 Working backwards 173
 Multistep problems 174
 Unfamiliar contexts 176
Polya's Step 3: Carry out the plan 177
 Thinking about possible outcomes 177
Polya's Step 4: Look back at what you’ve done 177
An authentic example of problem solving 178
Conclusion 179

Appendix: Answers to learning activities 181
References 196
Index 200
PREFACE

Rather than being a ‘how to do’ or ‘how to teach’ mathematics guide, this text specifically aims to assist people who self-identify as needing some additional support in becoming more mathematically confident and competent (although at times we will mention the importance of certain aspects for teachers). The approach taken is to focus on a few foundational concepts that we feel, from our experience, cause common mathematical difficulties for people. The reader is asked to reflect on and self-assess in relation to some core content knowledge and also their personal attitudes to mathematics. From that point, the text is intended for the reader to engage in areas where it is felt assistance is needed. Broadly the focus is to assist the reader to take some steps to improve their number sense. As we progress through the chapters, we will provide learning activities to help clarify ideas and to give readers a chance to apply the ideas. When relevant, the answers to the questions are provided in the Appendix.

ABOUT NUMBER SENSE

Number sense can be many things to many people, so we have no intention of trying to present the myriad possibilities. We have chosen topics (as reflected in the contents pages) that we feel are at the core of mathematical understanding and being numerate but which we find are the most common areas of concern. Because mathematics can be inherently complex and abstract, understanding foundational elements that develop personal number sense is vital. Whenever possible, authentic scenarios are used to help the reader contextualise the mathematics concepts and give insight into how they are used and why they are so important.

ABOUT THE AUTHORS

Annette and Geoff each have over 20 years’ experience teaching mathematics in secondary and primary schools respectively. They have taught mathematics education courses at tertiary level for the last 15 years. During this time, they have been researching with and working with in-service teachers in the field of mathematics. In more recent years, they have also had considerable experience helping pre-service education students prepare for or re-sit their LANTITE (Literacy and Numeracy Test for Initial Teacher Education), a process during which some common issues have become apparent. These many years of experience across the spectrum of mathematics education have informed the focus of this text.