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This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2022

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Evertse, J. H., author. | Győry, Kálmán, author.
Title: Effective results and methods for diophantine equations over

finitely / Jan-Hendrik Evertse, Kálmán Győry.
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Preface

This book is devoted to Diophantine equations where the solutions are taken
from an integral domain of characteristic 0 that is finitely generated over Z,
which is a domain of the shape Z[z1, . . . , zr ] with a quotient field of character-
istic 0, where the generators z1, . . . , zr may be algebraic or transcendental over
Q. For instance, the ring of integers and the rings of S-integers of a number field
are finitely generated domains where all generators are algebraic. Our aim is to
prove effective finiteness results for certain classes of Diophantine equations,
i.e., results that not only show that the equations from the said classes have
only finitely many solutions, but whose proofs provide methods to determine
the solutions in principle.

There is an extensive literature on Diophantine equations with solutions
taken from the ring of rational integers Z, or from more general domains, con-
taining theorems on the finiteness of the set of solutions of such equations.
Most of the finiteness theorems over Z, and more generally over rings of in-
tegers and S-integers of number fields are ineffective. Their proofs are mainly
based on techniques from Diophantine approximation (e.g., the Thue–Siegel–
Roth–Schmidt theory) often combined with algebra and arithmetic geometry.
These techniques yield the finiteness of the number of solutions but do not
enable one to determine the solutions. Lang (1960) and others used certain
specialization arguments to extend several ineffective finiteness results to the
even more general case when the solutions are taken from an arbitrary integral
domain of characteristic 0 that is finitely generated over Z.

Since the 1960s, a great number of ineffective finiteness theorems over
number fields were made effective and new theorems were obtained in ef-
fective form by means of A. Baker’s effective theory of logarithmic forms.
These results give effective upper bounds for the solutions, and thereby make
it possible, at least in principle, to find all the solutions of the equations un-
der consideration. Analogous theorems were established by Mason (1984) and

xi
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xii Preface

others over function fields of characteristic 0 as well, which provide effective
upper bounds for the heights of the solutions, but do not imply the finiteness of
the number of solutions.

Győry (1983, 1984b) was the first to extend effective Diophantine results
over number fields to the finitely generated case and proved effective finite-
ness theorems over certain restricted classes of finitely generated integral do-
mains over Z of zero characteristic. He developed an effective specialization
method, reducing the initial equations to the number field and function field
cases, and using the corresponding effective results over number fields and
function fields, he derived effective bounds for the solutions of the initial equa-
tions.

In the paper Evertse and Győry (2013), Győry’s specialization method was
extended to the case of arbitrary finitely generated domains of characteristic 0
over Z. The crucial new tool in this extension was the work of Aschenbren-
ner (2004) on effective commutative algebra. Evertse’s and Győry’s general
specialization method may be viewed as a “machine,” which takes as input
an effective Diophantine finiteness result concerning S-integral solutions over
number fields together with an effective analogue over function fields, and
produces as output a corresponding effective result over finitely generated do-
mains. This general specialization method led to effective finiteness results for
various classes of Diophantine equations over arbitrary domains of characteris-
tic 0 that are finitely generated over Z: Evertse and Győry (2013, 2014, 2015),
Bérczes, Evertse, and Győry (2014), Bérczes (2015a, 2015b), and Koymans
(2016, 2017) established general effective finiteness theorems over finitely
generated domains of characteristic 0 for several classical equations, includ-
ing unit equations in two unknowns, Thue equations, hyper- and superelliptic

equations, and the Catalan equation. An important feature of these results is
their quantitative nature, i.e., they give upper bounds for the sizes (suitable
measures) of the solutions in terms of defining parameters for the domain from
which the solutions are taken and for the Diophantine equation under consid-
eration.

Our book provides the first comprehensive treatment of effective results and
methods for Diophantine equations over finitely generated domains. Similarly
to the above-mentioned literature, most of the results in our book are proved in
quantitative form, giving effective bounds for the sizes of the solutions. Apart
from the results mentioned above, our book contains new material, concerning
decomposable form equations over finitely generated domains. Here, we have
adapted the method of Győry (1973, 1980a) and Győry and Papp (1978) to
reduce the decomposable form equations under consideration to systems of
unit equations in two unknowns. Here again, we give effective upper bounds
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Preface xiii

for the sizes of the solutions, and for this purpose, we had to work out new
effective procedures. As a special case, we get back the results on discriminant

equations from Evertse and Győry (2017a, 2017b).
We believe that the results in this book do not exhaust the possibilities of

our techniques. Hopefully, they will inspire further investigations to obtain new
effective results for other classes of Diophantine equations over finitely gener-
ated domains.

This book is aimed at anyone (graduate student and expert) with basic
knowledge of algebra (groups, commutative rings, fields, Galois theory) and
elementary algebraic number theory. No further specialized knowledge of com-
mutative algebra or algebraic geometry is presupposed.
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Glossary of Frequently Used Notation

General Notation

|A| cardinality of a finite set A
log∗x max(1, log x), log∗0 ≔ 1
≪, ≫ Vinogradov symbols; A(x) ≪ B(x) or B(x) ≫

A(x) means that there is a constant c > 0 such that
|A(x) | ≤ cB(x) for all x in the specified domain.
The constant c may depend on certain specified
parameters independent of x

≪a,b, ... the positive constants implied by ≪a,b, ... depend
only on a,b, . . . and are effectively computable

O(·) c× the expression between the parentheses, where
c is an effectively computable positive absolute
constant. The c may be different at each occur-
rence of O(·)

Z, Z>0, Z≥0 integers, positive integers, non-negative integers
Q, R, C rational numbers, real numbers, complex numbers
gcd greatest common divisor
D( f ) discriminant of a polynomial f (X )
K algebraic closure of a field K

A integral domain (i.e., commutative ring with 1 and
without divisors of 0)

A∗ unit group (multiplicative group of invertible ele-
ments) of A

AG integral closure of A in an extension G of the quo-
tient field of A

A[X1, . . . ,Xn] ring of polynomials in n variables with coeffi-
cients in A

xv
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xvi Glossary of Frequently Used Notation

A[α1, . . . ,αn] { f (α1, . . . ,αn ) : f ∈ A[X1, . . . ,Xr ]}, A-algebra
generated by α1, . . . ,αn

ξ +M {ξ + η : η ∈ M}, M-coset, where M is an A-
module and ξ belongs to an A-module containing
M

M′/M quotient A-module of two A-modules M′,M,
where M′ ⊇ M; M′/M consists of the M-
cosets ξ +M with ξ ∈M′, and is endowed with
addition (ξ1 +M) + (ξ2 +M) := (ξ1 + ξ2) +M
and scalar multiplication a · (ξ +M) := aξ +M,
for ξ1, ξ2, ξ ∈M′ and a ∈ A

H (Q), L(Q) maximum of the absolute values resp. the sum
of the absolute values of the coefficients of Q ∈

Z[X1, . . . ,Xn]
deg Q, h(Q) the total degree of Q ∈ Z[X1, . . . ,Xn], resp. the

logarithmic height log H (Q) of Q

s(Q) max(1,deg Q,h(Q)), the size of Q

Finite Étale Algebras over Fields

Ω/K finite étale algebra over a field K , i.e., a direct
product L1 × · · · × Lq of finite separable field ex-
tensions of K

[Ω : K] dimK Ω

x 
→ x (i) nontrivial K-algebra homomorphisms Ω→ K

DΩ/K (α) discriminant of α ∈ Ω over K

AΩ integral closure of an integral domain A with quo-
tient field K in a finite étale K-algebra Ω

O A-order of Ω, i.e., a subring of AΩ containing A

and generating Ω as a K-vector space

Algebraic Number Fields

ordp (a) exponent of a prime number p in the unique prime
factorization of a ∈ Q, and ordp (0) = ∞

|a |p p−ordp (a) , p-adic absolute value of a ∈ Q

|a |∞ max(a,−a), ordinary absolute value of a ∈ Q

Qp p-adic completion of Q, Q∞ = R
MQ {∞} ∪ {primes}, set of places of Q
OK , DK , hK , RK ring of integers, discriminant, class number, regu-

lator of a number field K

p, a nonzero prime ideal, fractional ideal of OK
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Glossary of Frequently Used Notation xvii

[α] = αOK fractional ideal generated by α
ordp (a) exponent of p in the unique prime ideal factoriza-

tion of a
ordp (α) exponent of p in the unique prime ideal factoriza-

tion of (α) for α ∈ K , with ordp (0) := ∞.
NK (a) absolute norm of a fractional ideal a of OK (writ-

ten as N (a) if it is clear which is the underlying
number field)

MK set of places of a number field K

| · |v (v ∈MK ) normalized absolute values of K , satisfying the
product formula, with |α |v := NK (p)−ordp (α) if
α ∈ K and p is the prime ideal of OK correspond-
ing to the finite place v

Kv completion of K at v
S∞ set of infinite (archimedean) places
S finite set of places of K , containing S∞

OS {α ∈ K : |α |v ≤ 1 for v ∈ MK \S}, ring of S-
integers, written as ZS if K = Q

O∗
S

{α ∈ K : |α |v = 1 for v ∈ MK \S}, group of
S-units, written as Z∗

S
if K = Q

NS (α)
∏

v∈S |α |v , S-norm of α ∈ K

RS S-regulator
PS , QS max{NK (p1), . . . ,NK (pt )},

∏t
i=1 NK (pi ), where

p1, . . . ,pt are the prime ideals of OK correspond-
ing to the finite places of S

|x|v (v ∈MK ) maxi |xi |v , v-adic norm of x = (x1, . . . , xn ) ∈ Kn

Hhom(x)
(∏

v∈MK
|x|v
)1/[K :Q], absolute homogeneous

height of x ∈ Kn

H (x)
(∏

v∈MK
max(1, |x|v )

)1/[K :Q], absolute height of
x ∈ Kn

H (α)
(∏

v∈MK
max(1, |α |v )

)1/[K :Q], absolute height of
α ∈ K

hhom(x), h(x), h(α) log Hhom(x), log H (x), log H (α), absolute loga-
rithmic heights (x ∈ Kn , α ∈ K)

h(P) h(xP ), xP vector consisting of the nonzero coeffi-
cients of a polynomial P ∈ K[X1, . . . ,Xn]

Function Fields

k field of constants (always algebraically closed)
k((z)) field of Laurent series in z
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xviii Glossary of Frequently Used Notation

gK/k genus of function field K with constant field k
(K/k is always assumed to be of transcendence
degree 1)

MK set of (normalized discrete) valuations of K , trivial
on k

v(x) (v ∈MK ) mini v(xi ), v-adic norm of x = (x1, . . . , xn ) ∈ Kn

Hhom
K

(x) −
∑

v∈MK
v(x), homogeneous height of x ∈ Kn

HK (x)
∑

v∈MK
max(0,−v(x)), height of x ∈ K

S a finite subset of MK

OS {α ∈ K : v(α) ≥ 0 for v ∈ MK \S}, ring of S-
integers

O∗
S

{α ∈ K : v(α) = 0 for v ∈ MK \S}, group of
S-units

Finitely Generated Domains

A = Z[z1, . . . , zr ] { f (z1, . . . , zr ) : f ∈ Z[X1, . . . ,Xr ]}, finitely gen-
erated integral domain over Z with quotient field
K = Q(z1, . . . , zr )

A ≃ Z[X1, . . . ,Xr ]/I I := { f ∈ Z[X1, . . . ,Xr ] : f (z1, . . . , zr ) = 0},
finitely generated ideal in Z[X1, . . . ,Xr ]

I = ( f1, . . . , fM ) ideal representation for A

α̃ ∈ Z[X1, . . . ,Xr ] representative for α ∈ A if α = α̃(z1, . . . , zr )
A effectively given if an ideal representation ( f1, . . . , fM ) for A is

given
α ∈ A effectively given
(computable)

if a representative for α is given (can be com-
puted)

{z1 = X1, . . . , zq = Xq } transcendence basis for K = Q(z1, . . . , zr ) over Q
A0 = Z[X1, . . . ,Xq] subring of A with unique factorization
deg α, h(α) for α ∈ A0 the total degree and logarithmic height of α
K0 = Q(X1, . . . ,Xq ) quotient field of A0

K = K0(w) where w ∈ A, integral over A0 with degree D

over K0

deg α (α ∈ K ) max(deg Pα,0, . . . , deg Pα,D−1, deg Qα ), where
Pα,0, . . . ,Pα,D−1,Qα ∈ A0 are relatively prime,
and α = Q−1

α

∑D−1
j=0 Pα, jω

j

h(α) (α ∈ K ) max(h(Pα,0), . . . ,h(Pα,D−1),h(Qα ))
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History and Summary

First, we give a brief historical overview of the equations treated in our book,
and then outline the contents of the book.

We start with ineffective results. Thue (1909) developed an ingenious
method for approximation of algebraic numbers by rationals. As an application,
he proved that if F ∈ Z[X,Y ] is a binary form (i.e., a homogeneous polynomial)
of degree at least 3, which is irreducible over Q and δ is a nonzero integer, then
the equation

F (x, y) = δ in x, y ∈ Z (1)

(nowadays called a Thue equation) has only finitely many solutions. Thue’s ap-
proximation result was later considerably improved and generalized by many
people including Siegel, Mahler, Dyson, Gel’fond, Roth, Schmidt, and Schlick-
ewei.

Thue’s finiteness theorem concerning equation (1) has many generaliza-
tions. Siegel (1921) generalized it for the number field case when the ground
ring, i.e., the ring from which the solutions are taken, is the ring of integers OK

of a number field K . Mahler (1933) extended Thue’s theorem to the case of
ground rings of the form Z[(p1, . . . , ps )−1], where p1, . . . , ps are primes, while
Parry (1950) gave a common generalization of the results of Siegel and Mahler
to the case where the ground ring is the ring of S-integers of a number field.

Siegel’s theorem has the following important consequence, which was not
stated explicitly by Siegel but was implicitly proved by him. Denote by O∗

K

the group of units of OK , and let α and β be nonzero elements of the number
field K . Using the fact that O∗

K
is finitely generated, it is easy to deduce from

Siegel’s theorem that the equation

αx + βy = 1 (2)

xix
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xx History and Summary

in x, y ∈ O∗
K

has only finitely many solutions. Similarly, it follows from the
results of Mahler and Parry that equation (2) has finitely many solutions even
in S-units of K ; these are elements of K composed of prime ideals from a finite,
possibly empty set S of prime ideals of OK . Nowadays equation (2) is called
a unit equation (when S is empty) resp. S-unit equation otherwise, or more
precisely a unit equation and S-unit equation in two unknowns.

Further important equations are

f (x) = δym in x, y ∈ Z, (3)

where f ∈ Z[X] is a polynomial of degree n and δ ∈ Z\{0}. Equation (3) is
called elliptic if n = 3 and m = 2, more generally hyperelliptic if n ≥ 3 and
m = 2, and superelliptic if n ≥ 2 and m ≥ 3. If m or n is at least 3 and f has no
multiple zeros, equation (3) has only finitely many solutions. This was proved
in the elliptic case by Mordell (1922a, 1922b, 1923), in the hyperelliptic case by
Siegel (1929), and in the superelliptic case by Siegel (1929). LeVeque (1964)
considered (3) in the more general case when f may have multiple zeros, and
gave a finiteness criterion for (3) over the ring of integers of a number field.

A celebrated theorem of Siegel (1929) states that if F (X,Y ) is a polyno-
mial with coefficients in a number field K , which is irreducible over K , and
the affine curve F (x, y) = 0 is of genus ≥1, then this curve has only finitely
many points with integral coordinates in K . This theorem implies the above-
mentioned finiteness results on Thue equations, unit equations, and hyperellip-
tic/superelliptic equations over number fields.

Lang (1960) generalized Siegel’s theorem to what we call the finitely gen-
erated case, when the solutions are taken from an arbitrary integral domain of
characteristic 0 that is finitely generated as a Z-algebra, that is, a domain of the
shape

Z[z1, . . . , zr ] = { f (z1, . . . , zr ) : f ∈ Z[X1, . . . ,Xr ]},

where z1, . . . , zr may be algebraic or transcendental over Q. Recall that both
the ring of integers of a number field K and the rings of S-integers of K are of
this shape, with z1, . . . , zr all algebraic. In his proof, Lang used a specializa-
tion argument, reducing the theorem to the case of number fields and function
fields of one variable, and then applied Siegel’s theorem (1929) and its func-
tion field analogue from Lang (1960). As a consequence, Lang extended the
earlier finiteness results concerning Thue equations, unit equations, and hyper-
elliptic/superelliptic equations to the finitely generated case.

Multivariate generalizations of Thue equations that have attracted much at-
tention are the decomposable form equations

F (x1, . . . , xm ) = δ in x1, . . . , xm ∈ Z, (4)
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History and Summary xxi

where δ ∈ Z\{0} and F (X1, . . . ,Xm ) is a decomposable form of degree n > m

in m ≥ 2 variables with coefficients in Z, i.e., a homogeneous polynomial,
which factorizes into linear forms with coefficients in the algebraic closure Q.
Further important types of decomposable form equations are norm form equa-

tions, discriminant form equations, and index form equations, which are of
basic importance in algebraic number theory. Schmidt (1971, 1972) developed
a multidimensional generalization of Roth’s theorem on the approximation of
algebraic numbers, eventually leading to his famous Subspace Theorem, and
from the latter he deduced a finiteness criterion for norm form equations. Ev-
ertse and Győry (1988b) proved a general finiteness criterion for decomposable
form equations of the form (4). Their proof depends on the following finiteness
result on multivariate unit equations of the form

α1x1 + · · · + αm xm = 1 in x1, . . . , xm ∈ O
∗
K , (5)

where K is a number field and α1, . . . ,αm are nonzero elements of K . A so-
lution of (5) is called degenerate if there is a vanishing subsum on the left
hand side of (5). In this case (5) has infinitely many solutions if O∗

K
is infinite.

As a generalization of Siegel’s theorem on equation (2), van der Poorten and
Schlickewei (1982) and Evertse (1984) proved independently of each other that
equation (5) has only finitely many non-degenerate solutions. This theorem was
extended by Evertse and Győry (1988a) and van der Poorten and Schlickewei
(1991) to the finitely generated case, when K is a finitely generated extension
of Q and O∗

K
is replaced by a finitely generated multiplicative subgroup of

K∗. As a consequence, the above-mentioned general finiteness criterion for (4)
was proved in Evertse and Győry (1988b) in a more general form, over finitely
generated domains of characteristic 0.

In the 1960s, Baker developed an effective method in transcendence theory,
providing nontrivial effective lower bounds for linear forms in logarithms of al-
gebraic numbers. This furnished a very powerful tool to prove effective finite-
ness results for Diophantine equations over Z and more generally over number
fields that enabled one to determine, at least in principle, all solutions of the
equations under consideration. Using his method, Baker (1968b, 1968c, 1969)
derived explicit upper bounds among others for the solutions of Thue equations
and hyperelliptic/superelliptic equations. Győry (1974, 1979) used Baker’s the-
ory of logarithmic forms to obtain explicit upper bounds for the solutions of
unit equations and S-unit equations in two unknowns (Evertse, Győry, Stewart
and Tijdeman, 1988b). With the help of his bounds, Győry proved effective
finiteness theorems for discriminant equations for polynomials

D( f ) = δ in monic polynomials f ∈ Z[X] (6)
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xxii History and Summary

and for elements

D(α) = δ in algebraic integers α. (7)

Here, D( ) denotes the discriminant of a polynomial f resp. of an algebraic
integer α, and δ is a nonzero integer. Two monic polynomials f , f ′ ∈ Z[X] are
called strongly Z-equivalent if f ′(X ) = f (X + a) for some a ∈ Z. Similarly,
two algebraic integers α and α′ are said to be strongly Z-equivalent if α′ − α ∈
Z. Clearly, strongly Z-equivalent monic polynomials resp. algebraic integers
have the same discriminant.

Győry (1973) proved that there are only finitely many pairwise strongly
Z-inequivalent monic polynomials with the property (6). A similar finiteness
theorem was proved for the solutions of (7) by Birch and Merriman (1972), and
independently by Győry (1973). Győry’s proofs for (6) and (7) are effective.
These results, in less precise form, were generalized in Győry (1978a) for the
number field case, and in Győry (1982) in an ineffective form, for the finitely
generated case, subject to the condition that the ground ring is integrally closed.
These results have many applications, among others, to power integral bases of
ring extensions.

By using Győry’s bounds on the solutions of unit equations in two un-
knowns, Győry (1976, 1980a) and Győry and Papp (1978) generalized Baker’s
effective theorem on Thue equations to equations in arbitrarily many unknowns.
They derived explicit bounds for the solutions of a class of decomposable form
equations over number fields, including discriminant form equations and cer-
tain norm form equations.

Tijdeman (1976) used Baker’s theory of logarithmic forms to give an ex-
plicit upper bound for the solutions of the Catalan equation

xm − y
n
= 1 in positive integers x, y,m,n with m,n > 1 and mn > 4. (8)

Further, when in equation (3) m is also unknown and f has at least two distinct
zeros, Schinzel and Tijdeman (1976) gave an effective upper bound for m.
In this case, equation (3) is now called the Schinzel–Tijdeman equation. It is
interesting to note that the effective theorems of Tijdeman (1976) and Schinzel
and Tijdeman (1976) had no previously ineffective versions.

For Thue equations, unit equations, and hyper/superelliptic equations, anal-
ogous effective results were obtained by Mason (1981, 1983, 1984) and others
over function fields of characteristic 0. The above-mentioned effective results
over number fields and function fields were later improved and generalized by
many people, and led to several further applications.

In Győry (1983, 1984b), the author extended the effective finiteness theo-
rems concerning Thue equations, discriminant equations, and a class of decom-
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posable form equations over number fields to similar such equations over re-
stricted classes of finitely generated domains of characteristic 0, which may
contain both algebraic and transcendental elements. To prove these extensions,
Győry developed an effective specialization method to reduce the general equa-
tions under consideration to equations of the same type over number fields and
function fields, and then used effective results concerning these reduced equa-
tions to derive effective bounds for the solutions of the initial equations.

Evertse and Győry (2013) refined the method of Győry and proved effec-
tive finiteness theorems for unit equations in two unknowns in full generality,
over arbitrary finitely generated domains of characteristic 0 over Z. In fact,
they obtained their results by combining Győry’s techniques with the work of
Aschenbrenner (2004) concerning the effective resolution of systems of linear
equations over polynomial rings Z[X1, . . . ,Xn].

The general effective specialization method of Evertse and Győry led to
effective finiteness results over finitely generated domains for several other
classes of Diophantine equations, such as Thue equations, hyper/superelliptic
equations, and the Schinzel–Tijdeman equation (Bérczes, Evertse and Győry
2014), a generalization of unit equations (Bérczes, 2015a, 2015b), and the
Catalan equation (Koymans 2016, 2017). Further, generalizing another method
of Győry (1973) and Győry and Papp (1978) applied over number fields, the
present authors in Evertse and Győry (2017a, 2017b) and in Sections 2.6 and
2.8 of this book obtained effective finiteness theorems for decomposable form
equations and discriminant equations over finitely generated domains. This
other method is not based on specialization but instead uses a reduction of
the equation under consideration to unit equations in two unknowns.

It is important to note that with the exception of discriminant equations
and hyper- and superelliptic equations, both methods mentioned above provide
quantitative results over finitely generated domains, giving effective bounds
for the solutions. This is due to the effective and quantitative feature of the
main tools from Chapters 4 to 8.

Major open problems are to make effective the general finiteness theo-
rems of Siegel (1929) on integral points of curves and of van der Poorten
and Schlickewei (1982) and Evertse (1984) on multivariate unit equations over
number fields. Such effective versions could be extended to the finitely gener-
ated case, using existing analogues over function fields and applying our gen-
eral effective specialization method.

We now outline the contents of our book. In Chapter 1, we present the
most general ineffective finiteness results over finitely generated domains for
Thue equations, unit equations in two unknowns, a generalization of unit equa-
tions, hyper- and superelliptic equations, curves of genus ≥1 with finitely many
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xxiv History and Summary

integral points, decomposable form equations, multivariate unit equations, and
discriminant equations. Further, except for curves of genus ≥1 and multivari-
ate unit equations, we cite the most general effective versions concerning the
equations mentioned over number fields.

In Chapter 2, we state general effective finiteness theorems over finitely
generated domains of characteristic 0 for unit equations in two unknowns, Thue
equations, hyper- and superelliptic equations, the Schinzel–Tijdeman equation,
the Catalan equation, decomposable form equations, and discriminant equa-
tions. As was mentioned above, apart from discriminant equations, the other
results give also effective bounds for the solutions.

Chapter 3 is devoted to a short explanation of our general effective methods.
In Chapters 4 and 5, those effective results are collected on the above equa-

tions over number fields and function fields that are needed in Chapters 9 and
10, in the proofs of the general effective theorems stated in Chapter 2. We have
skipped the complete proofs of the theorems in Chapters 4 and 5, which are
rather technical. Instead, we sketch the proofs in simplified forms, which give
sufficient insight into the main ideas.

Chapters 6–8 contain further important tools. In Chapter 6, we have col-
lected results from effective commutative algebra; in Chapter 7, we give the
detailed treatment of our effective specialization method; and in Chapter 8, we
prove some useful results for “degree-height estimates,” which may be viewed
as an analogue of the naive height estimates of algebraic numbers for elements
of the algebraic closure of a finitely generated field.

Lastly, in Chapters 9 and 10, the results and methods from Chapters 4 to 8
are combined to prove the general effective results presented in Chapter 2.
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