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1

Ineffective Results for Diophantine Equations

over Finitely Generated Domains

This book is about Diophantine equations where the solutions are taken from

an integral domain of characteristic 0 that is finitely generated over Z, that is,

from a domain of the shape

Z[z1, . . . , zr ] = { f (z1, . . . , zr ) : f ∈ Z[X1, . . . ,Xr ]}

whose quotient field is of characteristic 0. The generators z1, . . . , zr may be

either algebraic or transcendental over Q.

For instance, let K be a number field and OK its ring of integers. Let

{ω1, . . . ,ωd } be a Z-module basis of OK . Then OK = Z[ω1, . . . ,ωd].

More generally, let K be a number field and with the notation introduced in

Section 4.2, let S be a finite set of places of K , consisting of all infinite places

of K and of the prime ideals p1, . . . ,pt of OK . Then the ring of S-integers of

K , denoted by OS , is given by the set of all elements α of K such that there are

non-negative integers k1, . . . , kt with αp
k1

1
· · ·p

kt
t ⊆ OK . In the particular case

that S consists only of the infinite places of K , the ring OS is just equal to OK .

We may express OS otherwise as

OS = Z[ω1, . . . ,ωd , π
−1],

where again, {ω1, . . . ,ωd } is a Z-module basis of OK and where πOK =

(p1, . . . ,pt )
hK with hK being the class number of K . Thus, both the ring of

integers and the rings of S-integers of a number field are domains finitely gen-

erated over Z, with algebraic generators.

In general, we will consider Diophantine equations over integral domains

Z[z1, . . . , zr ] where some of the generators, say z1, . . . , zq , are algebraically

independent of Q, and the other generators are algebraic over Q(z1, . . . , zq ).

In this chapter, we present the most important ineffective finiteness theo-

rems for integral solutions of various classes of Diophantine equations,
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2 Ineffective Results

including Thue equations, unit equations, hyper- and superelliptic equations,

equations involving integral points on curves, decomposable form equations,

and discriminant equations. We consider these classes of equations in separate

sections. For each class, we state the finiteness results in their most general

form, over an arbitrary integral domain of characteristic 0 that is finitely gener-

ated over Z, and give an account of the earlier special cases, leading to the gen-

eral result. Over Z or more generally over the rings of integers or S-integers of

number fields, these results were proved mostly by the powerful Thue–Siegel–

Roth–Schmidt method, while in the finitely generated case, the equations are

reduced either to the number field and function field cases by means of some

specialization arguments or to such equations for which the finiteness of the

number of solutions is already proved; see, e.g., Lang (1960), Győry (1982),

Evertse and Győry (1988a, 1988b), and van der Poorten and Schlickewei (1991).

At the end of each section, we make a mention to the corresponding effective

results over Z or over number fields whose general versions over finitely gen-

erated domains will be presented in Chapter 2.

The above-mentioned equations have been studied very extensively, and

they have many important generalizations, analogues, and applications. For

details, we refer, e.g., to the books Lang (1962, 1978, 1983), Borevich and Sha-

farevich (1967), Mordell (1969), Baker (1975), Győry (1980b), Evertse (1983),

Mason (1984), Shorey and Tijdeman (1986), Schmidt (1991), Sprindžuk (1993),

Bombieri and Gubler (2006), Zannier (2009), Evertse and Győry (2015, 2017a),

Bugeaud (2018), and the survey papers of Evertse, Győry, Stewart, and Tijde-

man (1988b), and Győry (1984a, 1992, 2002).

1.1 Thue Equations

Let A denote an integral domain of characteristic 0 that is finitely generated

over Z. Let K denote the quotient field of A and fix an algebraic closure K of

K . We first consider the equation

F (x, y) = δ in x, y ∈ A (1.1.1)

over A, where F (X,Y ) is a binary form of degree n with coefficients in A and

δ ∈ A\{0}.

The following result is a consequence of the more general Theorem 1.4.1,

which will be stated in Section 1.4.

Theorem 1.1.1 Assume that F has at least three pairwise nonproportional lin-

ear factors over K. Then equation (1.1.1) has only finitely many solutions.
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1.1 Thue Equations 3

The condition in the theorem is obviously satisfied if F has degree at least 3

and its discriminant is nonzero. This theorem cannot be extended to binary

forms F with fewer than three pairwise nonproportional linear factors; for

instance, the Pell equation x2 − dy2
= 1 over Z, where d is a positive integer

not being a square, has infinitely many solutions.

In the classical case A = Z, Theorem 1.1.1 was proved by Thue (1909).

In fact, Thue proved it for irreducible F, but the general case can be easily

reduced to the irreducible one. The proof of Thue’s theorem is based on his

result concerning approximations of algebraic numbers by rationals. After Thue,

equations of the shape (1.1.1) are named Thue equations.

Thue’s theorem has been generalized by many people. Siegel (1921)

extended it to the case when A is the ring of integers of a number field, and

Mahler (1933) extended it to rings of the shape Z[(p1, . . . , ps )−1], where

p1, . . . , ps are distinct primes. Parry (1950) gave a common generalization of

the results of Siegel and Mahler to rings of S-integers of a number field. In the

above general form, Theorem 1.1.1 is due to Lang (1960).

We would like to mention another equivalent formulation of Theorem 1.1.1.

First, we recall a result of Mahler (1933). Let F ∈ Z[X,Y ] be a binary form with

at least three pairwise nonproportional linear factors over Q, and let p1, . . . , ps

be distinct prime numbers. Then the equation

F (x, y) = ±p
z1

1
· · · p

zs
s in x, y, z1, . . . , zs ∈ Z with gcd(x, y) = 1 (1.1.2)

has only finitely many solutions. If we drop the restriction gcd(x, y) = 1, then

we can construct infinite classes of solutions by multiplying (x, y) with prod-

ucts of powers of p1, . . . , ps . Thus, it is easily seen that Mahler’s result can

be translated as follows. Let S = {p1, . . . , ps } be a finite set of primes, ZS =

Z[(p1, . . . , ps )−1] the corresponding ring of S-integers, and Z∗
S
= {±p

z1

1
· · · p

zs
s :

z1, . . . , zs ∈ Z} the group of units of ZS . Then the solutions of

F (x, y) ∈ Z∗S in (x, y) ∈ Z2
S (1.1.3)

lie in finitely many Z∗
S

-cosets, where a Z∗
S

-coset is a set of solutions of the

shape {u · (x0, y0) : u ∈ Z∗
S
}, with (x0, y0) ∈ Z2

S
fixed.

We now generalize this last equation to arbitrary finitely generated domains

of characteristic 0 that are finitely generated over Z. Let A be such a domain

and denote by A∗ its unit group, i.e., the group of invertible elements. Further,

let F ∈ A[X,Y ] be a binary form and δ a nonzero element of A, and consider

the following generalization of (1.1.3):

F (x, y) ∈ δA∗ in (x, y) ∈ A2. (1.1.4)
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4 Ineffective Results

Because of its connection with (1.1.2), equation (1.1.4) is called a Thue–Mahler

equation. Just like above, we can divide the solutions (x, y) ∈ A2 of (1.1.4) into

A∗-cosets A∗(x0, y0) = {u · (x0, y0) : u ∈ A∗}.

The following assertion is equivalent to Theorem 1.1.1.

Theorem 1.1.2 Assume again that F has at least three pairwise nonproport-

ional linear factors over K. Then equation (1.1.4) has only finitely many A∗-

cosets of solutions.

Theorem 1.1.1⇒Theorem 1.1.2 Assume Theorem 1.1.1. According to a theo-

rem of Roquette (1957), the unit group A∗ is finitely generated. Let {v1, . . . ,vs }

be a set of generators for A∗, and define U := {v
m1

1
· · · v

ms

s : m1, . . . ,ms ∈

{0, . . . ,n−1}}. Then every element of A∗ can be expressed as u1un
2

, where u1 ∈

U and u2 ∈ A∗. Clearly, if (x, y) ∈ A2 satisfies (1.1.4), then F (x, y) = δu1un
2

for some u1 ∈ U , u2 ∈ A∗, and so F (x ′, y′) = δu1, where (x ′, y′) = u−1
2

(x, y).

Hence, every A∗-coset of solutions of (1.1.4) contains (x ′, y′) with F (x ′, y′) =

δu1 with some u1 ∈ U , and Theorem 1.1.1 implies that for each u1 ∈ U , there

are only finitely many possibilities for (x ′, y′). This implies Theorem 1.1.2.

Theorem 1.1.2⇒Theorem 1.1.1 Assume Theorem 1.1.2. Let A∗(x0, y0) be one

of the finitely many A∗-cosets of solutions of (1.1.4) and pick those solutions

from it that satisfy (1.1.1). These solutions are all of the shape u(x0, y0) with

un
= F (x0, y0)/δ, and there are only finitely many of those. Hence, (1.1.1) has

only finitely many solutions. �

Equation (1.1.1) has many further generalizations, see, e.g., equation (1.4.1)

in Section 1.4, equations (1.5.1), (1.5.2), and (1.5.4) in Section 1.5, and Evertse

and Győry (2015, Chapter 9).

In the case A = Z, the first general effective result for equation (1.1.1)

was established by Baker (1968b). He gave an explicit upper bound for the

solutions by means of his effective method based on lower bounds for lin-

ear forms in logarithms. Coates (1969) extended Baker’s result to the case of

ground rings of the type A = Z[(p1 · · · ps )−1], and later, Kotov and Sprindžuk

(1973) extended that to the case when A is the ring of S-integers of a number

field. Győry (1983), using his effective specialization method, generalized the

above results for a wide but special class of finitely generated domains that

may contain both algebraic and transcendental elements. In Chapter 2, Theorem

2.3.1 gives an effective version of Theorem 1.1.1 in quantitative form over an

arbitrary integral domain of characteristic 0 that is finitely generated over Z. Its

proof uses a precise effective version of Theorem 1.1.1 over rings of S-integers

of number fields; see Theorem 4.4.1 in Chapter 4, as well as an effective
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1.2 Unit Equations in Two Unknowns 5

version over function fields, see Theorem 5.4.1 in Chapter 5, which is a slight

variation of a result of Mason (1981, 1984).

1.2 Unit Equations in Two Unknowns

Let again A be an integral domain of characteristic 0 that is finitely generated

over Z and K its quotient field. Further, let a and b be the nonzero elements of

K . Consider the unit equation

ax + by = 1 in x, y ∈ A∗, (1.2.1)

where A∗ denotes the unit group of A, i.e., the multiplicative group of invertible

elements of A.

By a theorem of Roquette (1957), the group A∗ is finitely generated. Lang

(1960) proved the following general result.

Theorem 1.2.1 Equation (1.2.1) has only finitely many solutions.

The first finiteness result for equation (1.2.1) was implicitly proved by Siegel

(1921) in the case where K is a number field and A is the ring of integers of

K . For the case when A is of the type Z[(p1 · · · ps )−1] with distinct primes

p1, . . . , ps , the finiteness of the number of solutions was obtained by Mahler

(1933), while a common generalization of the results of Siegel and Mahler fol-

lows from Parry (1950).

In fact, in Lang (1960), the following more general version of Theorem 1.2.1

is established.

Theorem 1.2.2 Let K be a field of characteristic 0, a and b the nonzero ele-

ments of K, and Γ a finitely generated multiplicative subgroup of K∗. Then the

equation

ax + by = 1 in x, y ∈ Γ (1.2.2)

has only finitely many solutions.

Proof Using an argument due to Siegel (1921), the theorem can be easily

reduced to Theorem 1.1.1. Indeed, suppose that equation (1.2.2) has infinitely

many solutions. Let n be an integer ≥3. Since Γ is finitely generated, the quo-

tient group Γ/Γn is finite. Hence, there is a solution (x0, y0) of (1.2.2) such that

there are infinitely many solutions x, y such that x ∈ x0Γ
n and y ∈ y0Γ

n . Each

of these solutions x, y can be written in the forms x = x0un and y = y0v
n with

some u,v ∈ Γ. Denoting by A the ring generated by Γ over Z, it follows that

the Thue equation

(ax0)un
+ (by0)vn = 1

has infinitely many solutions u,v ∈ A. This contradicts Theorem 1.1.1. �
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6 Ineffective Results

We note that, conversely, Thue equations can be reduced to finitely many

appropriate unit equations; see, e.g., Evertse and Győry (2015). In other words,

Thue equations and unit equations in two unknowns are, in fact, equivalent.

This was (implicitly) pointed out by Siegel (1926).

Theorem 1.2.2 has several generalizations, see, e.g., Theorem 1.5.4 in Sec-

tion 1.5, Lang (1960, 1983), and Evertse and Győry (2015). Here we present

one of them.

Lang (1960) extended his result concerning equation (1.2.2) to equations of

the shape

F (x, y) = 0 in x, y ∈ Γ, (1.2.3)

where Γ is again a finitely generated multiplicative subgroup of K , and where

F ∈ A[X,Y ] is a nonconstant polynomial. He proved the following.

Theorem 1.2.3 Let F ∈ A[X,Y ] be a nonconstant polynomial that is not divis-

ible by any polynomial of the shape

XmY n − α or Xm − αY n , (1.2.4)

with α ∈ Γ and with non-negative integers m and n, not both zero. Then equa-

tion (1.2.3) has only finitely many solutions.

It is easy to see that the exceptions described in Theorem 1.2.3 must be

excluded.

Lang (1965a, 1965b) conjectured that Theorem 1.2.3 remains valid if one

replaces Γ by its division group Γ, which consists of those γ ∈ K
∗

such that

γk ∈ Γ for some positive integer k. Hence, in this case, the solutions x, y do not

necessarily belong to K . Lang’s conjecture has been proved by Liardet (1974,

1975) who obtained the following.

Theorem 1.2.4 Let F ∈ A[X,Y ] be a nonconstant polynomial that is not divis-

ible by any polynomial of the shape (1.2.4) with α ∈ Γ and with non-negative

integers m and n, not both zero. Then equation (1.2.3) has only finitely many

solutions even in x, y ∈ Γ.

The first general effective results for equation (1.2.1) over the ring of

integers of algebraic number fields were proved in Győry (1972, 1973, 1974,

1976), over rings of S-integers of an algebraic number field in Győry (1979),

and independently, in a less precise form, in Kotov and Trelina (1979). Using

Baker’s method concerning linear forms in logarithms, effective upper bounds

were given for the solutions. These bounds were improved later by several

authors; see, e.g., Bugeaud and Győry (1996a), Győry and Yu (2006), and

Győry (2019).
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1.3 Hyper- and Superelliptic Equations 7

Over algebraic number fields, Bombieri and Gubler (2006) gave an effective

version of Lang’s theorem on equation (1.2.3), which was made explicit by

Bérczes, Evertse, Győry, and Pontreau (2009). These results are proved under

a slightly stronger condition than (1.2.4), with α ∈ K used in place of α ∈ Γ.

In the number field case, an effective version of Liardet’s theorem for linear

polynomials F is due to Bérczes, Evertse, and Győry (2009), and for the general

case to Bérczes, Evertse, Győry, and Pontreau (2009).

In Section 2.2, we present effective versions of Theorems 1.2.1 and 1.2.2

in quantitative form over an arbitrary integral domain of characteristic 0 that

is finitely generated over Z; see Theorems 2.2.1 and 2.2.3. In its proof, we use

the result of Győry and Yu (2006) concerning equation (1.2.1) for the group of

S-units of a number field, as well as the Mason–Stothers abc-theorem for func-

tion fields (as in Mason (1984)), see Theorem 5.2.2 in Chapter 5. Further, we

formulate some effective generalizations for equation (1.2.3), due to Bérczes

(2015a, 2015b), see Theorems 2.2.4 and 2.2.5.

1.3 Hyper- and Superelliptic Equations

Now consider the equation

f (x) = δym in x, y ∈ A, (1.3.1)

where A is again an integral domain of characteristic 0 that is finitely generated

over Z, f ∈ A[X] is a polynomial of degree n ≥ 2, δ ∈ A\{0}, and m ≥ 2 is an

integer. Equation (1.3.1) is called elliptic if n = 3 and m = 2, hyperelliptic if

n ≥ 3 and m = 2, and superelliptic if n ≥ 2 and m ≥ 3.

The following theorem follows from the general ineffective Theorem 1.4.1

of Lang.

Theorem 1.3.1 Suppose that in (1.3.1) m or n is at least 3 and that f has no

multiple zeros. Then (1.3.1) has only finitely many solutions.

Under the assumptions of Theorem 1.3.1, the affine curve f (x) − δym = 0

has genus ≥1. Thus, Theorem 1.3.1 is a consequence of the general Theorem

1.4.1 stated below on the finiteness of the number of intregral points on al-

gebraic curves. The example of Pell equations shows that (1.3.1) may have

infinitely many solutions if m = 2 and n = 2.

In the special case A = Z, Mordell (1922a, 1922b, 1923) proved the finite-

ness of the numbers of solutions of elliptic equations for which the polynomial

f has no multiple zeros. In particular, this implies that for every nonzero integer

k, the Mordell equation x3
+k = y

2 has only finitely many solutions. Mordell’s
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8 Ineffective Results

finiteness results were extended by Siegel (1926) to hyperelliptic equations, by

reducing such equations to unit equations. LeVeque (1964) considered (1.3.1),

where f may have multiple zeros, and gave a finiteness criterion for the equa-

tion (1.3.1) when A is the ring of integers of a number field. The proofs of

Mordell, Siegel, and LeVeque are ineffective.

Over Z, Baker (1968b, 1968c, 1969) was the first to give effective upper

bounds for the solutions of (1.3.1) in the case when f has at least three simple

zeros if m = 2 and at least two simple zeros if m ≥ 3. Brindza (1984) made

LeVeque’s theorem effective and extended it to S-integral solutions from a

number field.

Schinzel and Tijdeman (1976) considered equation (1.3.1) in the more gen-

eral situation when m is also unknown. In the case that A = Z and that f has at

least two distinct zeros, they derived an effective upper bound for m. Equation

(1.3.1) with m also unknown is nowadays called the Schinzel–Tijdeman equa-

tion. All the effective results mentioned above depend on Baker’s method.

In Chapter 2, we present effective versions of Theorem 1.3.1 and the

Schinzel–Tijdeman theorem in quantitative form, over an arbitrary integral

domain of characteristic 0 that is finitely generated over Z; see Theorems 2.4.1

and 2.4.2. These results follow from similar effective results over number fields

(see Theorems 4.5.1–4.5.3) and function fields (see Theorems 5.5.1 and 5.5.2).

1.4 Curves with Finitely Many Integral Points

Let K be a finitely generated extension of Q and A a subring of K that is

finitely generated over Z. The following finiteness theorem is of fundamental

importance in Diophantine number theory.

Theorem 1.4.1 Let F ∈ K[X,Y ] be a polynomial irreducible over K such that

the affine curve F (x, y) = 0 is of genus ≥1. Then this curve has only finitely

many points with coordinates in A.

In other words, under the above assumptions, the equation

F (x, y) = 0 in x, y ∈ A (1.4.1)

has only finitely many solutions.

In the case when K is a number field and A its ring of integers, this cel-

ebrated theorem was proved by Siegel (1929). Further, Siegel described the

cases when the curve has genus 0 and has infinitely many points with coor-

dinates in A. Mahler (1934) conjectured that a similar statement holds for ra-

tional points with coordinates having only finitely many fixed primes in their
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1.5 Decomposable Form Equations and Multivariate Unit Equations 9

denominators, and proved this for curves of genus 1. In the above general form,

Theorem 1.4.1 is due to Lang (1960); see also Lang (1962, 1983). In this proof,

Lang used a specialization argument, reducing Theorem 1.4.1 to the case of

number fields resp. function fields of one variable, and then applied Siegel’s

theorem and its analogue over function fields from Lang (1960).

Confirming Mordell’s (1922a) famous conjecture on rational points on cur-

ves, Faltings (1983) proved, first for number fields K and later for finitely gen-

erated extensions K of Q; (see Faltings and Wüstholz [1984, p. 205,

Theorem 3]), that if the above curve has genus ≥2, then it has only finitely

many points even with coordinates in K as well. Except for the genus 1 case,

Faltings’ theorem contains Theorem 1.4.1.

All known proofs of Theorem 1.4.1 and those of Faltings are ineffective. As

was mentioned in Sections 1.1–1.3, Theorem 1.4.1 has been made effective in

a couple of important special cases. Further, in the case when K is a number

field, an effective version of Theorem 1.4.1 for genus 1 curves was obtained by

Baker and Coates (1970).

It is a major open problem to give an effective version of Theorem 1.4.1

in full generality.

1.5 Decomposable Form Equations and Multivariate

Unit Equations

Let K be a finitely generated extension field of Q and F ∈ K[X1, . . . ,Xm] a

decomposable form in m ≥ 2 variables, i.e., F factorizes into linear forms over

an extension of K , which we may choose to be a given algebraic closure K

of K . Let δ ∈ K∗ and A be a subring of K that is finitely generated over Z.

As a generalization of the Thue equation, we consider the decomposable form

equation

F (x) = δ in x = (x1, . . . , xm ) ∈ Am . (1.5.1)

Let L0 be a maximal set of pairwise linearly independent linear factors of F.

That is, we can express F as cℓ
e1

1
· · · ℓ

en
n , where L0 = {ℓ1, . . . , ℓn }, c ∈ K∗, and

e1, . . . ,en are positive integers. For applications, it is convenient to consider

the following generalization of equation (1.5.1). Let L ⊇ L0 be a finite set of

pairwise linearly independent linear forms of X1, . . . ,Xm , with coefficients in

K , and consider now the equation

F (x) = δ in x = (x1, . . . , xm ) ∈ Am with ℓ(x) � 0 for all ℓ ∈ L. (1.5.1a)

For L = L0, equation (1.5.1a) gives (1.5.1).
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10 Ineffective Results

To state the main results, we need some definitions. Given a nonzero linear

subspace V of the K-vector space Km and linear forms ℓ1, . . . , ℓr in

K[X1, . . . ,Xm], we say that ℓ1, . . . , ℓr are linearly dependent on V if there are

c1, . . . ,cr ∈ K , not all 0, such that c1ℓ1 + · · · + cr ℓr vanishes identically on V .

Otherwise, we say that ℓ1, . . . , ℓr are linearly independent on V .

We say that a nonzero linear subspace V of Km is L-nondegenerate if L con-

tains r ≥ 3 linear forms ℓ1, . . . , ℓr that are linearly dependent on V , while each

pair ℓi , ℓ j (i � j) is linearly independent of V . Otherwise, the space V is called

L-degenerate. That is, V is L-degenerate precisely if there are ℓ1, . . . , ℓr ∈ L

such that ℓ1, . . . , ℓr are linearly independent of V , while each other’s linear

form ℓ ∈ L is linearly dependent on V to one of ℓ1, . . . , ℓr . In particular, V is

L-degenerate if V has dimension 1.

Lastly, we call V L-admissible if no linear form in L vanishes identically

on V .

The following general finiteness criterion was proved by Evertse and Győry

(1988b).

Theorem 1.5.1 The following two statements are equivalent:

(i) Every L-admissible linear subspace of Km of dimension ≥2 is L0-

nondegenerate;

(ii) For every subring A of K that is finitely generated over Z and for every

δ ∈ K∗, equation (1.5.1a) has only finitely many solutions.

For L = L0, this theorem gives a finiteness criterion for equation (1.5.1).

It relates a statement (cf. (ii)) about the finiteness of the number of solutions

to a condition (cf. (i)) that can be formulated in terms of linear algebra. It can

be shown that (i) is effectively decidable once K , L0, and L are given in some

explicit form; see Evertse and Győry (2015, Theorem 9.1.1) for an equivalent

formulation of (i) for which the effective decidability is clear.

In the case m = 2 and L = L0, Theorem 1.5.1 gives immediately Theorem

1.1.1 on Thue equations. For a more general version of Theorem 1.5.1, see

Evertse and Győry (2015, Chapter 9).

Decomposable form equations are of basic importance in Diophantine num-

ber theory. Besides Thue equations (when m = 2), important classes of decom-

posable form equations are norm form equations, discriminant form equations,

and index form equations.

Let us start with norm form equations. Let α1 = 1,α2, . . . ,αm ∈ K and sup-

pose they are linearly independent over K . Put K ′ := K (α1, . . . ,αm ). Assume

that K ′ is of degree n ≥ 3 over K . Put ℓ(X) := α1X1 + · · · + αmXm and denote

by ℓ(i) (X) := α
(i)

1
X1 + · · · + α

(i)
m Xm (i = 1, . . . ,n) the conjugates of ℓ(X) with

respect to K ′/K . Then
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