
Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index

|x| (absolute value), 35
�

n

2

�

(binomial coefficient), 33, 53, 146
dxe (ceiling), 134
_ (disjunction), 542
n! (factorial), 115, 293, 443, 519
bxc (floor), 68
¬ (logical negation), 542
|S| (set size), 144
= vs. :=, 7
1� 1

e
, 486

2-OPT algorithm, 500–501
2-change, 499
implementation, 517, 518, 649
improving 2-change, 499
is interruptible, 501
pseudocode, 500
running time, 501
solution quality, 501
vs. 3-OPT, 506, 509

2-SAT, 197, 548
2-change, see 2-OPT algorithm
2-SUM, 260–262, 289
3-SAT

and the Exponential Time Hypothesis, 587
is NP-complete, see Cook-Levin theorem,

stronger version
is NP-hard, see Cook-Levin theorem
padded, 595
problem definition, 553
reduces to directed Hamiltonian path, 563–

567
reduces to graph coloring, 576, 653
reduces to independent set, 559–562
reduction from an arbitrary NP problem,

582–584
Schöning’s algorithm, 548–550, 652

3-SUM, 287
63.2%, 486

A∗ search, 212–213, 263
Aaronson, Scott, 586
Aarts, Emile, 508
abstract data type, 214
Ackermann function, 350
acknowledgments, xvi
ACM, 39

adjacency lists, 147–148
in graph search, 161
input size, 150
vs. adjacency matrix, 149

adjacency matrix, 148–149
applications, 149
input size, 150
sparse representation, 150
vs. adjacency lists, 149

Adleman, Leonard, 132
Aho, Alfred V., 5
Albertini, Ange, 543
algorithm, 2

anytime, 501
approximation, 456, 474
constant-time, 28
design paradigms, 46
exponential-time, 449
fast, 23, 445
fixed-parameter, 534, 588
heuristic, 456
linear-time, 23
mind-blowing, 45
online, 477
polynomial-time, 448
pseudopolynomial-time, 570
quadratic-time, 28
quantum, 452
randomized, 452
subexponential-time, 453

algorithm design paradigm, 291
divide-and-conquer, see divide-and-conquer

algorithms
dynamic programming, see dynamic program-

ming
greedy algorithms, see greedy algorithms
local search, see local search

algorithm field guide, 630–631
algorithmic game theory, 596
all-pairs shortest path problem, see shortest paths,

all-pairs
Alon, Noga, 527
alphabet, see code, alphabet
among friends, 11, 14, 72, 299, 340, 403
Applegate, David L., 445
applications, 2

655
©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

656 Index

approximation algorithm, 456, 474
approximation ratio, 474

as an insurance policy, 475
Aquarius Records, 191
arc, see edge (of a graph), directed
argmax, 316
argmin, 316
asymptotic analysis, 22
asymptotic notation, 27–42

as a sweet spot, 27
big-O notation, see big-O notation
big-O vs. big-theta notation, 38
big-omega notation, 37
big-theta notation, 38
history, 39
in seven words, 27
little-o notation, 39

auction, see FCC Incentive Auction
Augmented-BFS, 164
average-case analysis, 20

backtracking, 536
Backurs, Arturs, 589
Bacon number, 153, 164
Bacon, Kevin, 154
base case (induction), 617
base case (recursion), 7
beam search, 508, see also local search
Bellman, Richard E., 380, 418, 524
Bellman-Ford algorithm, 418–429

and Internet routing, 427
correctness, 423–424
example, 424–426
optimal substructure, 420–421
pseudocode, 423
reconstruction, 427
recurrence, 422
running time, 426–429
space usage, 427
stopping criterion, 422
subproblems, 419–420

Bellman-Held-Karp algorithm (for the TSP), 519–
525

correctness, 524
example, 545, 649
implementation, 550
memory requirements, 522, 547
optimal substructure, 521–522, 524–525
pseudocode, 524
reconstruction, 524, 547
recurrence, 522
running time, 524
subproblems, 523
variations, 546

BFS, see breadth-first search
BFS, 160

Biere, Armin, 543
big-O notation, 33–35

as a game, 34
English definition, 33
high-level idea, 28
in an exponent, 581
mathematical definition, 34
pictorial definition, 33

big-omega notation, 37
big-picture analysis, 21
big-theta notation, 38
binary search, 75, 238, 242
binary search tree, see search tree
bipartite graph, 196, 548
birthday paradox, 265, 272–273, 628
bit, 113, 306
Bixby, Robert E., 445
blazingly fast, xiii, xiv, 23, 65, 90, 91, 97, 153, 474,

607
bloom filter

INSERT, 277, 279
LOOKUP, 277, 280
applications, 278–279
has false positives, 277, 280
has no false negatives, 280
heuristic analysis, 282–285
heuristic assumptions, 282
in network routers, 279
operation running times, 278
raison d’être, 277
scorecard, 278
space-accuracy trade-off, 278, 281, 285, 287
supported operations, 277
vs. hash tables, 277–278
when to use, 278

Bloom, Burton H., 277
Blum, Manuel, 132
Boolean, 542
Borodin, Allan, 291
bow tie, see Web graph
branch and bound, 536, see also MIP solvers
breadth-first search, 157–163, 330, 349

and bipartite graphs, 196
correctness, 163
example, 161–162
for computing connected components, 166–

168
for computing shortest paths, 164–165
layers, 159, 165
pseudocode, 160
running time analysis, 163

Broder, Andrei, 191
broken clock, 204
brute-force search, see exhaustive search
BubbleSort, 11, 112, 640
BucketSort, 113

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 657

Bursztein, Elie, 543

C++, 238, 240
cache, 373
can we do better?, 5, 209, 306, 335, 444, 451, 477,

576, 577, 589
cascade model, 490
Cayley’s formula, 330
cf., 83
Chen, Ke, 635
chess, 262
ChoosePivot

median-of-three implementation, 118
naive implementation, 98, 100
overkill implementation, 99, 101
randomized implementation, 102

Chvátal, Vašek, 445
clause, 542, see also constraint
Clay Mathematics Institute, 586
clique problem

is NP-hard, 575, 652
reduction from independent set, 575, 652

closest pair
correctness, 65–67
exhaustive search, 59
one-dimensional case, 60
problem definition, 59
pseudocode, 60, 62
running time, 62

clustering, 167, 358–361
k-means, 360
and Kruskal’s algorithm, 361
choosing the number of clusters, 359
greedy criterion, 360
informal goal, 359
similarity function, 359
single-link, 361

Cobham, Alan, 449
cocktail party, xv, 215, 272, 447
code

⌃-tree, 312
alphabet, 306
as a tree, 309–312
average leaf depth, 312
average encoding length, 308
binary, 306
encodings as root-leaf paths, 311
fixed-length, 306
Huffman, see Huffman’s algorithm
optimal prefix-free, 308, 313
prefix-free, 307, 312
symbol frequencies, 308, 309
ternary, 327
variable-length, 306

coin flipping, 127, 275
collaborative filtering, 47

collision, see hash function, collision
color coding, 525–535

and minimum-cost panchromatic paths, 529–
531

correctness, 530, 534
example, 546, 650
in practice, 535
minimum-cost k-path problem, 526
motivation, 525
panchromatic path, 528
pseudocode, 533
reconstruction, 547
recurrence, 529
running time, 531, 533
subproblems, 529
with random colors, 531

compression, 306
compromising

from day one, 578
on correctness, 454–456, 471–518
on generality, 454–455, 470, 548
on speed, 454, 456–457, 519–550

computational complexity theory, 577–593
fine-grained, 589

computational genomics, 445, 525, see also se-
quence alignment

computational geometry, 59
computational lens, 3
computationally intractable, see NP-hardness
conflict-driven clause learning, 536, see also SAT

solvers
connected components

applications, 167–168
definition, 166
example, 168
in directed graphs, see strongly connected

components
linear-time computation, 168–170
number of, 170

constant, 35, 74
reverse engineering, 36, 137

constant factors, 21, 28
constraint

in mixed integer programming, 538
in satisfiability, 542

Cook reduction, 578
Cook, Stephen A., 553, 578
Cook, William J., 445
Cook-Levin theorem, 553–554

50th anniversary, 553
formal statement, 582
history, 553
proof sketch, 582–584
stronger version, 592

Cormen, Thomas H., 252
Cornuéjols, Gérard P., 484

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

658 Index

corollary, 15
counting inversions

correctness, 49, 52
exhaustive search, 47
implementation, 70
problem definition, 46
pseudocode, 48, 49
running time, 52
split inversions, 51

CountingSort, 113
stable implementation, 113

Coursera, xvi
coverage, 481, see also maximum coverage

is submodular, 515
CPLEX, see MIP solvers
Crosby, Scott A., 270
cryptography, 276
culturally acceptable inaccuracies, 466
cut (of a graph), 364
Cut Property, see minimum spanning tree, Cut Prop-

erty
cycle (of a graph), 329

negative, 417
Cycle Property, see minimum spanning tree, Cycle

Property
cycle-free shortest paths

as an optimization problem, 579
is NP-hard, 462, 555
problem definition, 462
reduction from directed Hamiltonian path,

463
Cygan, Marek, 534

DAG, see directed acyclic graph
Dasgupta, Sanjoy, 73
data structure

bloom filter, see bloom filter
deft deployment, 630
disjoint-set, see union-find
expertise levels, 215
hash table, see hash table
heap, see heap, see heap
principle of parsimony, 215
queue, 160, 214, 319
raison d’être, 214
scorecards, see scorecards
search tree, see search tree
stack, 172, 214
union-find, see union-find
vs. abstract data type, 214

de-duplication, 26, 260
decision problem, 579
decomposition blueprint, 106, 127, 274
degree (of a vertex in a graph), 151, 421
depth (of a node in a tree), 311
depth-first search, 158, 170–174, 330, 349

correctness, 173
example, 170
for computing connected components, 174
for computing strongly connected compo-

nents, 183
for topological sorting, 177–180
iterative implementation, 172
recursive implementation, 173
running time analysis, 174

derandomization, 453
descending clock auction, see FCC Incentive Auc-

tion
design patterns, xiv
DFS, see depth-first search
DFS (Iterative Version), 172
DFS (Recursive Version), 173
DFS-SCC, 187
DFS-Topo, 178
diameter (of a graph), 194, 595
dictionary, see hash table
diff, 413
Dijkstra, 202
Dijkstra (heap-based), 224, 225
Dijkstra’s shortest-path algorithm

and A∗ search, 212–213, 263
as a greedy algorithm, 292
correctness, 206–208, 299
Dijkstra score, 203
example, 204
for computing minimum bottleneck paths,

212, 236
greedy selection rule, 203
heap-based implementation, 222–226
in undirected graphs, 200
pseudocode, 202
pseudocode (heap-based), 224, 225
reconstructing shortest paths, 203
resembles Prim’s algorithm, 331
running time analysis, 209
running time analysis (heap-based), 225
straightforward implementation, 209
with negative edge lengths, 205, 416

Dijkstra, Edsger W., 198, 331
directed acyclic graph, 176

has a source vertex, 176
has a topological ordering, 176–177

discussion forum, xvi
disjunction (of literals), 542
dist, see shortest paths, distance
distance, see shortest paths, distance
divide-and-conquer, 9, 10, 45–46, 291–292, 630

for closest pair, 60
for counting inversions, 48
for matrix multiplication, 55
for sorting, 45
proofs of correctness, 93

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 659

vs. dynamic programming, 375, 379–380
when to use, 46

double summation, 626
Draper, Don, 154
DSelect

30-70 Lemma, 133–135
as a knockout tournament, 129
does not run in place, 131
heuristic analysis, 136
history, 132
pseudocode, 129
running time, 132
running time analysis, 132–137
vs. RSelect, 129, 132
with groups of 3 or 7, 139

Dumitrescu, Adrian, 635
dynamic programming, xiii

as recursion with a cache, 372
bottom-up, 373
for all-pairs shortest paths, see Floyd-

Warshall algorithm
for beating exhaustive search, 519–525, 529–

531, 631
for color coding, 529–531
for graph problems, 419
for knapsack, 455, 469, 515, 649
for optimal binary search trees, 400–410
for single-source shortest paths, see Bellman-

Ford algorithm
for the knapsack problem, 380–387
for the sequence alignment problem, 392–399
for the TSP, see Bellman-Held-Karp algo-

rithm
for weighted independent set in path graphs,

370–377
history, 380
memoization, 373
optimal substructure, 378
ordering the input, 382
principles, 377–378, 520
recurrence, 379
running time, 378, 520
saving space, 412, 645
subproblems, 378–379, 521
takes practice, 366
top-down, 372
vs. divide-and-conquer, 375, 379–380
when to use, 630

e (Euler’s number), 486, 519
e.g., 347
Easley, David, 192
edge (of a graph), 142

directed, 143
length, 198, 415
parallel, 144, 148, 330

undirected, 143
weighted, 148

Edmonds, Jack, 445, 449, 577
EdX, xvi
Egoyan, Atom, 154
Einstein, Albert, 214, 578
endpoints (of an edge), 143
equivalence class, 166
equivalence relation, 166
Erdös number, 154
Erdös, Paul, 154
ETH, see Exponential Time Hypothesis
Euclidean distance, 59, 518
event (in probability), 621
exchange argument, 299

for minimum spanning trees, 345
in Huffman’s algorithm, 321
in scheduling, 300

exhaustive search, 294, 309, 335, 368, 394, 410,
581, 630

for closest pair, 59
for counting inversions, 47

expectation (of a random variable), 492, 494, 623
linearity of, 624

expected value, see expectation
Exponential Time Hypothesis

and fixed-parameter algorithms, 588
and Schöning’s algorithm, 550, 587
definition, 587
is false for unnatural problems, 595, 653
vs. the P 6= NP conjecture, 453, 587
vs. the SETH, 588

factoring, 453, 465
Fano, Robert M., 313
fast algorithm, 23, 445
Fast Fourier Transform, 69
FCC Incentive Auction

algorithm portfolio, 608
and graph coloring, 603
and greedy heuristic algorithms, 600–604
and SAT solvers, 604–609
and timeouts, 609
and weighted independent set, 599
as a descending clock auction, 609–613
computing payments, 612, 615, 654
feasibility checking, 604–609
final outcome, 613
forward auction, 598
incentives, 613, 615, 654
matches supply and demand, 614
motivation, 596–598
preprocessing, 607
presolvers, 606
repacking problem, 605
representative instances, 602

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

660 Index

reverse auction, 598
side constraints, 605
station-specific multipliers, 601–602

feasible solution
in local search, 505
to an NP problem, 579

Federer, Roger, 132, 610
Feige, Uriel, 487
Fermat’s Last Theorem, 586
Fibonacci numbers, 389
field guide (to algorithm design), 630–631
Firth, Colin, 154
Fisher, Marshall L., 484
fixed-parameter algorithm, 534, 588
Floyd, Robert W., 132, 430
Floyd-Warshall algorithm, 430–437

detecting a negative cycle, 436–437
optimal substructure, 432–434
pseudocode, 434
reconstruction, 437
recurrence, 434
running time, 436
space usage, 436
subproblems, 430–432

Fomin, Fedor V., 534
for-free primitive, 23, 103, 155, 630
Ford Jr., Lester R., 418
forest (of trees), 315
Fortnow, Lance, 586
Four Color Theorem, 541
Fourier matrix, 69
fully polynomial-time approximation scheme (FP-

TAS), 516

Gödel, Kurt, 586
Gabow, Harold N., 638
Garey, Michael R., 557, 593
Gauss’s trick, 8, 56
Gauss, Carl Friedrich, 8
GenericSearch, 155
genetic algorithms, 508, see also local search
geometric series, 84–85, 128, 489
Git, 413
golden ratio, 389
good vs. evil, 82
Google, 3, 149
googol, 28, 262, 569, 576
Gosper’s hack, 524
gradient descent, 504
Graham’s algorithm, 473

approximate correctness, 474–477
bad example, 474, 479
intuition, 475
running time, 474, 514, 648
with small jobs, 511, 647

Graham, Ronald L., 473

graph, 142
k-colorable, 541
adjacency lists, 147–148, 150
adjacency matrix, 148–150, 435
applications, 143–144
bipartite, 196, 548
co-authorship, 154
complete, 146, 166, 443
connected, 144, 443
connected components, see connected com-

ponents
cut, 364
cycle, 175, 329
dense, 145, 430
diameter, 194, 595
directed, 143
directed acyclic, see directed acyclic graph
independent set, 366
input size, 144
notation, 142, 144
number of edges, 348
path, 146, 155, 166, 329, 368
planar, 541
radius, 194
representations, 146–149
search, 330, 349
spanning tree, 329, 443
sparse, 145, 429
tour, 443
tree, 146
Web, see Web graph

graph coloring, 541
and the FCC Incentive Auction, 603
applications, 541
as satisfiability, 542–543, 604
is NP-hard for k � 3, 576, 653
problem definition, 541
reduction from 3-SAT, 576, 653
with k = 2 (is linear-time solvable), 548

graph isomorphism, 453
graph search

A∗, 212–213, 263
applications, 153–155
breadth-first search, see breadth-first search
depth-first search, see depth-first search
for planning, 154
generic algorithm, 155–158
in game playing, 263
problem definition, 155

greatest hits, xv
greedy algorithm, 291–293

and brainstorming, 368, 473, 630
as a heuristic algorithm, 293, 473, 631
exchange argument, see exchange argument
for clustering, 360
for influence maximization, 493

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 661

for knapsack, 512, 648
for makespan minimization, 473, 477
for maximum coverage, 484
for optimal prefix-free codes, see Huffman’s

algorithm
for scheduling, 295–298
for set cover, 511, 647
for submodular function maximization, 514
for vertex cover, 513, 648
for weighted independent set, 600–602, 616,

654
in the FCC Incentive Auction, 600–604
informal definition, 291, 473
Kruskal’s algorithm, see Kruskal’s algorithm
Prim’s algorithm, see Prim’s algorithm
proof of correctness, 299
themes, 292
usually not correct, 292, 369

GreedyRatio, see scheduling, GreedyRatio
guess-and-check method, 137
guiding principles, 20–23
Gurobi Optimizer, see MIP solvers
Gusfield, Dan, 540

Hüffner, Falk, 535
Hadamard matrix, 69
hall of fame, 90, 346
halting problem, 453, 578
Hamiltonian path (directed)

equivalent to undirected Hamiltonian path,
576, 652

example, 463
is NP-hard, 563
problem definition (decision), 462
problem definition (search), 562
reduces to cycle-free shortest paths, 463
reduction from 3-SAT, 563–567
search vs. decision, 562, 575, 652

Hamiltonian path (undirected)
equivalent to directed Hamiltonian path, 576,

652
is NP-hard, 568
problem definition, 567
reduces to the TSP, 568–569

Hamm, Jon, 154
Hart, Peter E., 212
hash function

and the birthday paradox, 266
bad, 269
collision, 265
collisions are inevitable, 265, 270
cryptographic, 276, 543
definition, 264
desiderata, 271
don’t design your own, 276
example, 271–272

good, 271
how to choose, 276
kryptonite, 270
multiple, 269, 279
pathological data set, 270
perfect, 289, 640
random, 271, 282
state-of-the-art, 276
universal, 270, 288, 640

hash map, see hash table
hash table

DELETE, 258, 267
INSERT, 258, 267, 268
LOOKUP, 258, 267, 268
OUTPUTUNSORTED, 287
advice, 273
applications, 259–263
as an array, 257, 264
bucket, 266
collision-resolution strategies, 276
for de-duplication, 260
for searching a huge state space, 262
for the 2-SUM problem, 260–262
hash function, see hash function
heuristic analysis, 274
in compilers, 259
in network routers, 259
in security applications, 270
iteration, 260, 287
load, 274
load vs. performance, 275
non-pathological data set, 270
operation running times, 259
performance of chaining, 267, 274
performance of open addressing, 269, 274–

275
probe sequence, 267
raison d’être, 257
resizing to manage load, 275–276
scorecard, 259, 264, 275
space usage, 258
supported operations, 258
two-level, 640
vs. arrays, 263
vs. bloom filters, 277
vs. linked lists, 263
when to use, 259
with chaining, 266–267, 276
with double hashing, 268–269, 275
with linear probing, 268, 275, 276
with open addressing, 267–269, 276

head (of an edge), 143
heap (data structure)

DECREASEKEY, 225, 339
DELETE, 217, 236, 336
EXTRACTMAX, 217

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

662 Index

EXTRACTMIN, 216, 232, 336
FINDMIN, 217
HEAPIFY, 217, 236, 638
INSERT, 216, 229, 336
applications, 218–222
as a tree, 226
as an array, 228
bubble/heapify/sift (up or down), 231, 234,

236
for an event manager, 220
for median maintenance, 220, 256
for sorting, 219
for speeding up Dijkstra’s algorithm, 222–226
for speeding up Prim’s algorithm, 336–339
heap property, 227
in Graham’s algorithm, 474, 514, 648
in Huffman’s algorithm, 319
in the LPT algorithm, 477
keys, 216
operation running times, 217, 336
parent-child formulas, 228
raison d’être, 216, 336
scorecard, 217
supported operations, 216–217
vs. search trees, 240–242
when to use, 217

heap (memory), 216
HeapSort, 219–220
Held, Michael, 524
Heule, Marijn, 543
heuristic algorithm, 293, 456, 631

dynamic programming, 515
greedy, 471–496, 600–604
local search, see local search

hill climbing, see local search
hints, xvi, 632–654
Hoare, Tony, 92
Hopcroft, John E., 5, 132
Huffman’s algorithm, 313–316

⌃-tree, 312
average leaf depth, 312, 322
examples, 316–319
for ternary codes, 327
greedy criterion, 315
implemented with a heap, 319
implemented with two queues, 319, 327, 641
obtaining symbol frequencies, 309
proof of correctness, 320–325
pseudocode, 316
running time, 319

Huffman, David A., 313

i.e., 48
Impagliazzo, Russell, 588
in-place algorithm, 90
independence (in probability), 282, 625

independent set (of a graph), 366, 455
independent set problem, 558

is NP-hard, 558
reduces to clique, 575, 652
reduces to subset sum, 570–573
reduces to vertex cover, 575, 652
reduction from 3-SAT, 559–562
weighted, see weighted independent set

induction, see proofs, by induction
in greedy algorithms, 299

inductive hypothesis, 618
inductive step, 617
Indyk, Piotr, 589
influence, 492

is a weighted average of coverage functions,
494

is submodular, 515
influence maximization, 490–496

and NP , 584
approximate correctness of greedy algorithm,

493–496
cascade model, 490
generalizes maximum coverage, 492, 514,

648
greedy algorithm, 493
intuition, 494
is NP-hard, 492, 555
problem definition, 492
running time of greedy algorithm, 493, 496

InsertionSort, 11, 21, 112
integer multiplication, 4–9, 71–73

grade-school algorithm, 4
Karatsuba’s algorithm, 9
simple recursive algorithm, 7

integer programming, see mixed integer program-
ming

interview questions, xv
intractable, see NP-hardness
invariant, 94
inversion, 46

left vs. right vs. split, 48
IQ points, 3

Jarník’s algorithm, see Prim’s algorithm
Jarník, Vojtěch, 331
Java, 240, 272, 327
job, see scheduling
Johnson’s algorithm, 437
Johnson, David S., 557, 593

k-coloring, 541
k-SAT, 548

and the SETH, 588
Schöning’s algorithm, 548–550

Karatsuba, 9
implementation, 26
recurrence, 72

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 663

running time, 76
Karatsuba multiplication, 6–9

in Python, 77
Karatsuba, Anatoly, 6
Karp reduction, 590, see also Levin reduction
Karp, Richard M., 524, 553
Karpman, Pierre, 543
Kempe, David, 492
KenKen, 452, 580

vs. Sudoku, 112
key, 216
key-value pair, 11
Kleinberg, Jon, 45, 192, 392, 492
knapsack problem, 213, 380–387

applications, 382
as a mixed integer program, 538, 540
correctness, 385
definition, 381, 455
dynamic programming algorithm, 384, 455,

469, 515, 649
example, 385–386
generalizations, 391
greedy algorithm, 512, 648
is NP-hard, 575, 652
is pseudopolynomial-time solvable, 455, 570
measuring input size, 455
optimal substructure, 382
reconstruction, 386–387
recurrence, 383
reduction from subset sum, 575, 652
running time, 385
subproblems, 384
two-dimensional, 539

Knuth Prize, 553
Knuth, Donald E., 39, 275, 410, 543, 593
Kosaraju, 187
Kosaraju’s algorithm

correctness, 189
example, 188
from 30,000 feet, 183
implementation, 187, 197
pseudocode, 187
running time analysis, 189
why the reversed graph?, 184–186

Kosaraju, S. Rao, 183
Kowalik, Michał, 534
Kruskal’s algorithm

achieves the minimum bottleneck property,
358

and clustering, 361
cycle-checking, 349, 351
example, 346
in reverse, 363
outputs a spanning tree, 357
proof of correctness, 357–358, 364
pseudocode (straightforward), 347

pseudocode (union-find-based), 351
reasons to care, 346
running time (straightforward), 348–349
running time (union-find-based), 349
stopping early, 348
vs. Prim’s algorithm, 346

Kruskal, Joseph B., 346
Kumar, Ravi, 191

Ladner’s theorem, 595
Lehman, Eric, 617
Leighton, F. Thomson, 617
Leiserson, Charles E., 252
lemma, 15
length

of a path, 198
of an edge, 198, 415

Lenstra, Jan Karel, 508
Levin reduction, 590–591

spreads NP-completeness, 592
transitivity of, 594, 653

Levin, Leonid, 553
Leyton-Brown, Kevin, 596
Lin, Shen, 593
Lin-Kernighan heuristic, 508, see also local search
linear programming, 539
linear signaling pathways (in a PPI network), 525
linear-time algorithm, 23
linearity of expectation, 274, 624

doesn’t need independence, 108, 625
Linux kernel, 240
literal (in satisfiability), 542
little-o notation, 39
lnx, 75
local search, 497–510

2-OPT algorithm, see 2-OPT algorithm
and gradient descent, 504
as a walk in a graph, 504
as no-downside postprocessing, 505, 631
avoiding bad local optima, 508
choosing a neighborhood, 506
choosing an improving local move, 507
feasible solutions, 505
for maximum k-cut, 517, 649
for satisfiability, 608
for the TSP, 497–501, 506
generic pseudocode, 504
global optima, 505
history-dependent neighborhoods, 508
initialization, 507
is interruptible, 507
local moves, 505
local optima, 505
meta-graph, 502–504
non-improving local moves, 508
objective function, 505

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

664 Index

overview of paradigm, 504–505
population of solutions, 508
running time, 507
solution quality, 507
vs. MIP and SAT solvers, 509
when to use, 509, 631

logarithms, 15, 74
Lokshtanov, Daniel, 534
longest common subsequence, 413, 459

reduces to sequence alignment, 645
longest common substring, 413
longest processing time first, see LPT algorithm
lower-order terms, 28
LPT algorithm, 477

approximate correctness, 478–479, 514, 648
bad example, 477, 480, 514, 648
intuition, 478
running time, 477

machine learning, 504
supervised learning, 358
unsupervised learning, see clustering

Maghoul, Farzin, 191
magic boxes, 535–537, see also MIP solvers, SAT

solvers
and NP-hardness, 537
when to use, 631

makespan minimization, 471–481
as a mixed integer program, 547, 651
Graham’s algorithm, see Graham’s algorithm
in practice, 472, 478
is NP-hard, 472, 576, 653
LPT algorithm, see LPT algorithm
machine load, 471
objective function, 471
problem definition, 472
reduction from subset sum, 576, 653
with small jobs, 511, 647

mangosteen, 112
mantra, 5
Markov, Yarik, 543
Marx, Dániel, 534
master method

a, b, and d, 73, 79
applied to RecIntMult, 76
applied to Karatsuba, 76
applied to MergeSort, 75
applied to Strassen, 77, 78
applied to binary search, 75, 78
big-theta vs. big-O, 74
does not apply, 103, 106, 136
formal statement, 74
meaning of the three cases, 82–84
more general versions, 74
proof, 80–86

master theorem, see master method

mathematical background, xv, 616–628
matrix multiplication

definition, 53
exponent, 79
iterative algorithm, 54
simple recursive algorithm, 56
Strassen’s algorithm, 56–58, 452
the 2⇥ 2 case, 54

matrix-vector multiplication, 69
max-heap, see heap (data structure), EXTRACT-

MAX

maximum k-cut problem, 517, 649
maximum coverage, 481–490

applications, 483
approximate correctness of greedy algorithm,

486–489
as a mixed integer program, 547, 651
as team-hiring, 481
bad example, 482, 484–486, 490, 514, 648
greedy algorithm, 484
hardness of approximation, 487
intuition, 487
is NP-hard, 576, 652
problem definition, 482
reduction from set cover, 576, 652
running time of greedy algorithm, 484

MBP, see minimum spanning tree, minimum bot-
tleneck property

median (of an array), 26, 99, 121, 220
approximate, 103, 127, 621
vs. mean, 121
weighted, 139

median-of-medians, see DSelect

memoization (in dynamic programming), 373
Merge, 13–14

for counting inversions, 49
running time, 14–15

MergeSort, 10–20
analysis, 16–19
as a divide-and-conquer algorithm, 45
does not run in place, 90
implementation, 70
is comparison-based, 112
motivation, 10
pseudocode, 12
recurrence, 73
running time, 15, 75

metric TSP, see traveling salesman problem, metric
instances

Metropolis algorithm, 508, see also local search
Meyer, Albert R., 593, 617
Milgrom, Paul, 596
Millennium Problems, 586
min-heap, see heap (data structure)
minimum bottleneck property, see minimum span-

ning tree, minimum bottleneck property

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 665

minimum spanning tree
Cut Property, 340, 364, 642
Cycle Property, 364, 642
exchange argument, 345
history, 331
in directed graphs, 328
in disconnected graphs, 330
in linear time?, 643
Kruskal’s algorithm, see Kruskal’s algorithm
minimum bottleneck property, 340, 341, 344,

363
MST heuristic (for the TSP), 516
Prim’s algorithm, see Prim’s algorithm
reductions to, 363
uniqueness, 364
with distinct edge costs, 340, 344
with non-distinct edge costs, 342, 357, 363,

642
with parallel edges, 330

minimum-bottleneck spanning tree, 364, 643
minimum-cost k-path problem, see also color cod-

ing
exhaustive search, 527, 535
is NP-hard, 526, 555
problem definition, 526

minimum-cost panchromatic path problem, see

color coding
MiniSAT, see SAT solvers
MIP, see mixed integer programming
MIP solvers, 537–540

and modeling languages, 540
and nonlinearities, 539
are interruptible, 540
branch and bound, 536
example input file, 538
for the TSP, 548, 550
in the FCC Incentive Auction, 600, 602
starting points, 540
vs. local search, 509
when to use, 537, 631

mixed integer programming, 537
and linearity, 539
constraints, 538
decision variables, 538
for knapsack, 538, 540
for makespan minimization, 547, 651
for maximum coverage, 547, 651
for satisfiability, 548, 652
for the TSP, 547, 550, 651
for weighted independent set, 547, 651
is NP-hard, 555
multiple formulations, 540
objective function, 538
problem definition, 539
solvers, see MIP solvers

mod (operator), 272

mode (of an array), 26
modulo, 272
Moore’s law, 3, 22, 449, 465
MP3, 306, 309
MST, see minimum spanning tree
MWIS, see weighted independent set

n log n vs. n2, 16, 22
Nash, John F., Jr., 586
nearest neighbors (in computational geometry), 70
Needleman, Saul B., 393
Needleman-Wunsch (NW) score, see sequence

alignment
Nemhauser, George L., 484
network

movie, 153
neural, 504
physical, 153
road, 143
social, 143

neural networks, 504
Nielsen, Morten N., 291
Nilsson, Nils J., 212
Nobel Prize, see Turing Award
node, see vertex (of a graph)
nondeterminism, see NP
NP (acronym), 465, 580
NP (complexity class)

and FNP , 579
and efficient recognition of solutions, 580
and nondeterministic Turing machines, 580
as problems solvable by naive exhaustive

search, 579, 581
does not contain the halting problem, 579
feasible solution, 579
formal definition, 580
search vs. decision, 579

NP-completeness, 590–593
formal definition, 591
meaning, 590
three-step recipe, 592, 594, 653
vs. NP-hardness, 466, 591
what’s in a name?, 593
with decision problems, 591
with Karp reductions, 591

NP-hardness
acceptable inaccuracies, 466
and magic boxes, 537
and Moore’s law, 449, 465
and reductions, 460, 551
and subexponential-time solvability, 595, 653
applies to randomized and quantum algo-

rithms, 452
as amassing evidence of intractability, 450,

577–579
as relative intractability, 450

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

666 Index

definition (formal), 582
definition (provisional), 452
expertise levels, 447–448
forces compromise, 454
in practice, 465
in fifteen words, 448
in other disciplines, 551
is not a death sentence, 454, 465
is ubiquitous, 454
key takeaways, 457
level-1 expertise, 448–457, 464–466
level-2 expertise, 453–457, 471–550, 596–

616
level-3 expertise, 457–464, 551–576
level-4 expertise, 577–595
main idea, 451
of 19 problems, 554–557
of 3-SAT, see Cook-Levin theorem
oversimplified dichotomy, 448, 453, 466, 595,

654
proofs, 556
rookie mistakes, 464–466
strong vs. weak, 570
subtleties, 453
two-step recipe, 461, 552, 594, 631, 653
vs. NP-completeness, 466, 554, 591
with Levin reductions, 582

null pointer, 241

O(f(n)), see big-O notation
o(f(n)), see little-o notation
O’Donnell, Ryan, 577
objective function, 293
⌦(f(n)), see big-omega notation
optimal binary search trees, 400–410

correctness, 409
dynamic programming algorithm, 408
Knuth’s optimization, 410
optimal substructure, 403–406
problem definition, 403
reconstruction, 409
recurrence, 406
running time, 409
search frequencies, 402
subproblems, 408
vs. balanced binary search trees, 402
vs. optimal prefix-free codes, 403
weighted search time, 403
with unsuccessful searches, 403

optimization problem, 579
reduces to search version, 570, 575, 580, 652

order statistic, 107, 120

P (complexity class), 584
P 6= NP conjecture, 451–452

as a law of nature, 466
current status, 585–586

formal definition, 585
informal version, 451
is hard to prove, 452, 586
meaning, 585
reasons to believe, 586
refutation consequences, 586
vs. the ETH, 453, 587

panchromatic path, 528
Papadimitriou, Christos, 73
Partition, 96

proof of correctness, 97
runs in place, 98

partition problem, see subset sum problem
path (of a graph), 329

k-, 526
bottleneck, 341
cycle-free, 329
panchromatic, 528

path graph, 368
pathological data set, 270
Paturi, Ramamohan, 588
paying the piper, 224, 251, 339
pep talk, 33, 366
Perelman, Grigori, 586
PET, 593
Pigeonhole Principle, 265, 270, 418
Pilipczuk, Marcin, 534
Pilipczuk, Michał, 534
pivot element, 91
planning (as graph search), 154
pointer, 147
polynomial vs. exponential time, 449
polynomial-time algorithm, 448
polynomial-time solvability, 450

and reductions, 460
Pratt, Vaughan, 132
prefix-free code, see code, prefix-free
Prim’s algorithm

achieves the minimum bottleneck property,
341

example, 331
greedy criterion, 333
outputs a spanning tree, 344
proof of correctness, 340–345, 364
pseudocode, 333
pseudocode (heap-based), 338
resembles Dijkstra’s shortest-path algorithm,

331
running time (heap-based), 336, 339
running time (straightforward), 335
starting vertex, 334
straightforward implementation, 335
vs. Dijkstra’s shortest-path algorithm, 334,

340
vs. Kruskal’s algorithm, 346

Prim, Robert C., 331

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 667

prime number, 102
primitive operation, 4, 14, 19, 21
principle of parsimony, 215, 630
priority queue, see heap (data structure)
probability, 274, 490, 532, 620

independence, 282
of an event, 621

problem
NP-hard (formal definition), 582
NP-hard (provisional definition), 452
decision, 579
easy (oversimplified), 448
easy vs. polynomial-time solvable, 450
hard (oversimplified), 448
neither polynomial-time solvable nor NP-

hard, 453, 595
optimization, 579
polynomial-time solvable, 449
search, 579
undecidable, 578
universal, 592

problems vs. solutions, 3
programming, xv, 9
programming problems, xvi
proofs, xv

by contradiction, 36, 158, 300
by induction, 93, 137, 617–618
of correctness, 93, 298
on reading, 206

proposition, 15
protein-protein interaction (PPI) networks, 525
pseudocode, 9, 13
pseudopolynomial time, 570
Pyrrhic victory, 135
Pythagorean theorem, 67

QE D (q.e.d.), 19
quantum algorithm, 452
queue (data structure), 160, 214, 319
QuickSort

best-case scenario, 99
handling ties, 91
high-level description, 92
history, 92
implementation, 118
is comparison-based, 112
is not stable, 113
median-of-three, 118
partitioning around a pivot, 91, 93–98
pivot element, 91
proof of correctness, 93
pseudocode, 98
random shuffle, 102
randomized, 101
running time, 102
running time (intuition), 103–104

running time (proof), 104–111
runs in place, 90
worst-case scenario, 99

quizzes, xvi

Rackoff, Charles, 291
RadixSort, 113
Raghavan, Prabhakar, 191
Rajagopalan, Sridhar, 191
random variable, 622

geometric, 128
independent, 625
indicator, 627

randomized algorithms, 102, 129, 628, 631
and NP-hardness, 452
for 3-SAT, 548
for color coding, 531–533

Raphael, Bertram, 212
Rassias, Michael Th., 586
rate of growth, see asymptotic analysis
RecIntMult, 7

recurrence, 72
running time, 76

RecMatMult, 56
recommendation system, 47
recurrence, 71, 371

standard, 73
recursion, 7
recursion tree, 16, 80
reduction, 121, 201, 204, 458, 551, 630

Cook, 578
examples, 458
gone awry, 562
in the wrong direction, 465, 554
Karp, 590
Levin, 590–591
many-to-one, 590
mapping, 590
polynomial-time Turing, 578
preprocessor and postprocessor, 558, 591
preserves polynomial running time, 459, 464
simplest-imaginable, 557–558
spreads intractability, 460, 552
spreads tractability, 460, 536, 552
to a magic box, 536
transitivity of, 594, 653
with exponential blow-up, 590, 654

reference, see pointer
reverse auction, see FCC Incentive Auction
Rivest, Ronald L., 132, 252
rookie mistakes, 84, 464–466
RSelect

best-case scenario, 124
expected running time, 125
implementation, 140
pseudocode, 122

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

668 Index

running time analysis, 126–129
runs in place, 123
worst-case scenario, 124

RSP (rate of subproblem proliferation), see master
method, meaning of the three cases

running time, 14, 19, 28
RWS (rate of work shrinkage), see master method,

meaning of the three cases

sample space (in probability), 620
SAT, see satisfiability
SAT solvers, 540–544

and graph coloring, 616
and local search, 608
and the FCC Incentive Auction, 604–609
applications, 542
are only semi-reliable, 553
conflict-driven clause learning, 536
example input file, 543
portfolio, 608
starting points, 544
vs. local search, 509
when to use, 541, 631

satisfiability
k-SAT, see k-SAT
2-SAT (is linear-time solvable), 197, 548
3-SAT, see 3-SAT
and graph coloring, 542–543, 604
and the SETH, 588
applications, 542
as a mixed integer program, 548, 652
constraints, 542
decision variables, 542
disjunction (of literals), 542
is NP-hard, 555
literal, 542
modulo theories, 544
problem definition, 542
truth assignment, 542

Saurabh, Saket, 534
SCC, see strongly connected components
scheduling, 293, 471, see also makespan minimiza-

tion
GreedyDiff, 297
GreedyRatio, 297
completion time, 293
correctness of GreedyRatio, 299–302
exchange argument, 300
greedy algorithms, 295–298
running time, 298
sum of weighted completion times, 294

Schrijver, Alexander, 418
Schöning’s algorithm (for k-SAT), 548–550

and the ETH, 587
and the SETH, 588

Schöning, Uwe, 550

scorecards, 150, 217, 238, 240, 259, 264, 275, 278,
350

search problem, 579
reduces to decision version, 562, 575, 652

search tree
DELETE, 239, 247, 251
INSERT, 239, 246, 251
MAX, 237, 244
MIN, 237, 244
OUTPUTSORTED, 237, 246
PREDECESSOR, 237, 245
RANK, 238, 249, 255
SEARCH, 237, 243
SELECT, 237, 249–251
SUCCESSOR, 237, 245
2-3, 251
applications, 240
augmented, 249, 251, 255
AVL, 251
B, 251
balanced, 240, 251–253
height, 243
in-order traversal, 246
operation running times, 240
optimal, see optimal binary search trees
pointers, 241
raison d’être, 239
red-black, 251, 252
rotation, 252–253
scorecard, 240
search tree property, 241
splay, 251
supported operations, 239
vs. heaps, 240–242
vs. sorted arrays, 237, 240
when to use, 240
with duplicate keys, 255

Sedgewick, Robert, 91, 252
Segal, Ilya, 596
selection

DSelect, see DSelect

RSelect, see RSelect

problem definition, 120
reduces to sorting, 121

selection bias, 442
SelectionSort, 11, 112, 219
separate chaining, see hash table, with chaining
sequence alignment, 392–399

alignment, 393
and the SETH, 589
applications, 392
correctness, 398
dynamic programming algorithm (NW), 397
gap, 393
Needleman-Wunsch (NW) score, 393
optimal substructure, 394

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 669

penalties, 393
problem definition, 393
reconstruction, 399
recurrence, 396
reduction from longest common subsequence,

645
running time, 398
subproblems, 397
variations, 413

set cover problem, 511
greedy algorithm, 511, 647
is NP-hard, 575, 652
reduces to maximum coverage, 576, 652
reduction from vertex cover, 575, 652

SETH, see Strong Exponential Time Hypothesis
Shamir, Adi, 132
Sharir, Micha, 183
Shimbel, Alfonso, 418
shortest paths

all-pairs, 429, 459
all-pairs (dense graphs), 437
all-pairs (sparse graphs), 430, 437
and Bacon numbers, 154
and Internet routing, 427
and negative cycles, 462
and transitive closure, 429
Bellman-Ford algorithm, see Bellman-Ford

algorithm, 462
bottleneck, 212, 236
cycle-free, see cycle-free shortest paths
Dijkstra’s algorithm, see Dijkstra’s shortest-

path algorithm
distance, 163, 198, 415
Floyd-Warshall algorithm, see Floyd-

Warshall algorithm
history, 418
Johnson’s algorithm, 437
nonnegative edge lengths, 200, see also Dijk-

stra’s shortest-path algorithm
problem definition (all-pairs), 429
problem definition (single-source), 163, 198,

417
reduction from all-pairs to single-source, 429,

430
single-source, 198, 415, 459, 461
via breadth-first search, 164–165, 201
with negative cycles, 417
with negative edge lengths, 204, 416
with no negative cycles, 418
with parallel edges, 416
with unit edge lengths, 163, 201

SIGACT, 39
simulated annealing, 508, see also local search
single-source shortest path problem, see shortest

paths, single-source
six degrees of separation, 192

small world property, 192
social network, 490
solutions, xvi, 632–654
solver, 536, see also magic box
sorted array

scorecard, 238
supported operations, 237
unsupported operations, 239
vs. search trees, 240

sorting, 458
HeapSort, see HeapSort

MergeSort, see MergeSort

MergeSort vs. QuickSort, 90
QuickSort, see QuickSort

applications, 11, 26
associated data, 11
by key, 11
comparison-based, 112
in linear time, 320
in place, 90
in Unix, 112
lower bound, 112, 114–115
non-comparison-based, 113
problem definition, 11, 218
randomized, 102, 114
simple algorithms, 11–12
stable, 113
with duplicates, 11
with Hungarian folk dancers, 96

spanning tree (of a graph), 329
component fusion, 342
cycle creation, 342
minimum, see minimum spanning tree
number of, 330
number of edges, 343
type-C vs. type-F edge addition, 342

spectrum auction, see FCC Incentive Auction
stack (data structure), 172, 214

pop, 172
push, 172

stack (memory), 173
starred sections, xiv, 59
Stata, Raymie, 191
Steiglitz, Kenneth, 593
Stein, Clifford, 252
Stevens, Marc, 543
Stirling’s approximation, 519, 532
Strassen, 56–58, 452

running time, 77, 78
Strassen, Volker, 58
strong NP-hardness, 570
Strong Exponential Time Hypothesis

and graph diameter, 595, 654
and Schöning’s algorithm, 550, 588
and sequence alignment, 589
definition, 588

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

670 Index

vs. the ETH, 588
strongly connected components

and the 2-SAT problem, 197
definition, 181
giant, 191
in a reversed graph, 186, 189
linear-time computation, see Kosaraju’s algo-

rithm
meta-graph of, 182
sink, 184
source, 185
topological ordering of, 182, 185
via depth-first search, 181, 183

submodular function maximization, 514–515, 649
greedy algorithm, 514

subsequence, 413
subset sum problem

is NP-hard, 570
is pseudopolynomial-time solvable, 570
partition special case, 576
problem definition, 569
reduces to knapsack, 575, 652
reduces to makespan minimization, 576, 653
reduction from independent set, 570–573

substring, 413
Sudoku, 154, 212, 452, 580

vs. KenKen, 112
superteam, 132

tabu search, 508, see also local search
tail (of an edge), 143
Tardos, Éva, 45, 392, 492
Tarjan, Robert E., 132, 181, 638
task scheduling, 143, 174, 175
team-hiring, see maximum coverage
test cases, xvi
Tetris, 413
theorem, 15
⇥(f(n)), see big-theta notation
theta notation, see big-theta notation
three-step recipe, see NP-completeness, three-step

recipe
Tomkins, Andrew, 191
topological ordering

definition, 174
existence in directed acyclic graphs, 176–177
non-existence, 175

topological sorting, 174–180
example, 178
linear-time computation, 179
problem definition, 177
pseudocode, 178

TopoSort, 178
correctness, 179
in non-acyclic graphs, 181, 184
run backward, 187

running time analysis, 179
tour (of a graph), 443
transitive closure (of a binary relation), 429
traveling salesman problem

2-OPT algorithm, see 2-OPT algorithm
2-change, 499
3-OPT algorithm, 506
3-change, 506
applications, 445
as a mixed integer program, 547, 550, 651
Concorde solver, 548
conjectured intractability, 446
dynamic programming, see Bellman-Held-

Karp algorithm (for the TSP)
exhaustive search, 444, 446, 470, 579
history, 445
is NP-hard, 497, 568
metric instances, 516–517, 576, 649
MST heuristic, 516, 649
nearest neighbor algorithm, 497, 501, 518
number of tours, 443, 446
on non-complete graphs, 443
optimal substructure, 521–522, 524–525
path version, 445, 469, 555
problem definition, 443
reduction from undirected Hamiltonian path,

568–569
search version, 575
tree instances, 470, 647

tree, 146
binary, 226
chain, 243
complete, 226
depth (of a node), 311
forest, 315
height, 240, 243
optimal binary search, see optimal binary

search trees
root, 226
search, see search tree

TSP, see traveling salesman problem
tug-of-war, 82
Turing Award, 92, 132, 553
Turing machine, 578

nondeterministic, 580
Turing reduction, 578
Turing, Alan M., 578
two-step recipe, see NP-hardness, two-step recipe

UCC, 168
correctness, 169
running time analysis, 169

Ullman, Jeffrey D., 5
uniform distribution, 620
union-find

FIND, 350, 353

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

Cambridge University Press & Assessment
978-0-999-28298-4 — Algorithms Illuminated
Tim Roughgarden
Index
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Index 671

INITIALIZE, 350, 353
UNION, 350, 354, 355
for speeding up Kruskal’s algorithm, 351–352
inverse Ackermann function, 350
operation running times, 350, 356
parent graph, 352
path compression, 350
quick-and-dirty implementation, 352–356
raison d’être, 349
scorecard, 350
state-of-the-art implementations, 350
supported operations, 350
union-by-rank, 350, 355
union-by-size, 355

Unix, 413
upshot, xiv

van Maaren, Hans, 543
Vazirani, Umesh, 73
vertex (of a graph), 142

degree, 151
in-degree, 421
out-degree, 421
reachable, 155
sink, 176
source, 176, 198
starting, 198

vertex cover problem, 513
greedy algorithm, 513, 648
is NP-hard, 575, 652
reduces to set cover, 575, 652
reduction from independent set, 575, 652

videos, xvi, 252, 275, 289, 350, 355, 427, 428, 437,
640, 643, 649

von Neumann, John, 10, 586

Wallach, Dan S., 270
Walsh, Toby, 543
Warshall, Stephen, 430
Wayne, Kevin, 91, 252
weak NP-hardness, 570
Web graph, 143, 190–192

as a sparse graph, 149
bow tie, 191
connectivity, 192
giant component, 191
size, 149, 191, 259

weighted independent set
as a mixed integer program, 547, 651
greedy algorithm, 600–602, 616, 654
in acyclic graphs, 455
in general graphs, 390
in path graphs, see weighted independent set

(in path graphs)
in the FCC Incentive Auction, 599
problem definition, 367, 454

weighted independent set (in path graphs), 368

correctness, 375
dynamic programming algorithm, 374
failure of divide-and-conquer algorithms, 369
failure of greedy algorithms, 368, 370
optimal substructure, 370–371
reconstruction, 376–377
recurrence, 371
recursive algorithm, 372
running time, 374
subproblems, 373

Wernicke, Sebastian, 535
whack-a-mole, 229
why bother?, xiv, 2
Wiener, Janet, 191
Williams, H. Paul, 540
Williams, Virginia Vassilevska, 589
WIS, see weighted independent set
work, see running time
World Wide Web, see Web graph
worst-case analysis, 20
Wunsch, Christian D., 393

yottabyte, 259
YouTube, xvi
Yuster, Raphael, 527

Zichner, Thomas, 535
Zwick, Uri, 527

©2022, Soundlikeyourself Publishing, LLC

www.cambridge.org/9780999282984
www.cambridge.org

