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Chapter 1

Introduction

The goal of this chapter is to get you excited about the study of algorithms. We begin by

discussing algorithms in general and why they’re so important. Then we use the problem

of multiplying two integers to illustrate how algorithmic ingenuity can improve on more

straightforward or naive solutions. We then discuss the MergeSort algorithm in detail,

for several reasons: it’s a practical and famous algorithm that you should know; it’s a good

warm-up to get you ready for more intricate algorithms; and it’s the canonical introduction to

the “divide-and-conquer” algorithm design paradigm. The chapter concludes by describing

several guiding principles for how we’ll analyze algorithms throughout the rest of the book.

1.1 Why Study Algorithms?

Let me begin by justifying this book’s existence and giving you some reasons why you

should be highly motivated to learn about algorithms. So what is an algorithm, anyway? It’s

a set of well-defined rules—a recipe, in effect—for solving some computational problem.

Maybe you have a bunch of numbers and you want to rearrange them so that they’re in

sorted order. Maybe you have a road map and you want to compute the shortest path from

some origin to some destination. Maybe you need to complete several tasks before certain

deadlines, and you want to know in what order you should finish the tasks so that you

complete them all by their respective deadlines.

So why study algorithms?

Important for all other branches of computer science. First, understanding the basics of

algorithms and the closely related field of data structures is essential for doing serious work

in pretty much any branch of computer science. For example, during my years as a professor

at Stanford University, every degree the computer science department offered (B.S., M.S.,

and Ph.D.) required an algorithms course. To name just a few examples:

1. Routing protocols in communication networks piggyback on classical shortest-path

algorithms.

2. Public-key cryptography relies on efficient number-theoretic algorithms.

3. Computer graphics requires the computational primitives supplied by geometric

algorithms.

4. Database indices rely on balanced search tree data structures.

5. Computational biologists use dynamic programming algorithms to measure genome

similarity.
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1.2 Integer Multiplication 3

6. Clustering algorithms are one of the most ubiquitous tools in unsupervised machine

learning.

And the list goes on.

Driver of technological innovation. Second, algorithms play a key role in modern tech-

nological innovation. To give just one obvious example, search engines use a tapestry of

algorithms to efficiently compute the relevance of various Web pages to a given search query.

The most famous such algorithm is the PageRank algorithm, which gave birth to Google.

Indeed, in a December 2010 report to the United States White House, the President’s council

of advisers on science and technology wrote the following:

“Everyone knows Moore’s Law –– a prediction made in 1965 by Intel co-

founder Gordon Moore that the density of transistors in integrated circuits

would continue to double every 1 to 2 years. . . in many areas, performance

gains due to improvements in algorithms have vastly exceeded even the

dramatic performance gains due to increased processor speed.”1

Lens on other sciences. Third, although this is beyond the scope of this book, algorithms

are increasingly used to provide a novel “lens” on processes outside of computer science

and technology. For example, the study of quantum computation has provided a new

computational viewpoint on quantum mechanics. Price fluctuations in economic markets

can be fruitfully viewed as an algorithmic process. Even evolution can be thought of as a

surprisingly effective search algorithm.

Good for the brain. Back when I was a student, my favorite classes were always the

challenging ones that, after I struggled through them, left me feeling a few IQ points smarter

than when I started. I hope this material provides a similar experience for you.

Fun! Finally, I hope that by the end of the book you can see why the design and analysis

of algorithms is simply fun. It’s an endeavor that requires a rare blend of precision and

creativity. It can certainly be frustrating at times, but it’s also highly addictive. And let’s not

forget that you’ve been learning about algorithms since you were a little kid.

1.2 Integer Multiplication

1.2.1 Problems and Solutions

When you were in third grade or so, you probably learned an algorithm for multiplying two

numbers—a well-defined set of rules for transforming an input (two numbers) into an output

(their product). It’s important to distinguish between two different things: the description

of the problem being solved, and that of the method of solution (that is, the algorithm

for the problem). In this book, we’ll repeatedly follow the pattern of first introducing a

computational problem (the inputs and desired output), and then describing one or more

algorithms that solve the problem.

1Excerpt from Report to the President and Congress: Designing a Digital Future, December 2010 (page 71).
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4 Introduction

1.2.2 The Integer Multiplication Problem

In the integer multiplication problem, the input is two n-digit numbers, which we’ll call x
and y. The length n of x and y could be any positive integer, but I encourage you to think

of n as large, in the thousands or even more.2 (Perhaps you’re implementing a cryptographic

application that must manipulate very large numbers.) The desired output in the integer

multiplication problem is the product x · y.

Problem: Integer Multiplication

Input: Two n-digit nonnegative integers, x and y.

Output: The product x · y.

1.2.3 The Grade-School Algorithm

Having defined the computational problem precisely, we describe an algorithm that solves

it—the same algorithm you learned in third grade. We will assess the performance of this

algorithm through the number of “primitive operations” it performs, as a function of the

number of digits n in each input number. For now, let’s think of a primitive operation as

any of the following: (i) adding two single-digit numbers; (ii) multiplying two single-digit

numbers; or (iii) adding a zero to the beginning or end of a number.

To jog your memory, consider the concrete example of multiplying x = 5678 and

y = 1234 (so n = 4). See also Figure 1.1. The algorithm first computes the “partial

product” of the first number and the last digit of the second number 5678 · 4 = 22712.

Computing this partial product boils down to multiplying each of the digits of the first

number by 4, and adding in “carries” as necessary.3 When computing the next partial

product (5678 · 3 = 17034), we do the same thing, shifting the result one digit to the left,

effectively adding a “0” at the end. And so on for the final two partial products. The final

step is to add up all the partial products.

5678

× 1234

22712
17034
11356
5678

7006652

≤ 3# operations 
(per row)

# rows

Figure 1.1: The grade-school integer multiplication algorithm.

2If you want to multiply numbers with different lengths (like 1234 and 56), a simple hack is to just add

some zeros to the beginning of the smaller number (for example, treat 56 as 0056). Alternatively, the algorithms

we’ll discuss can be modified to accommodate numbers with different lengths.
38 · 4 = 32, carry the 3, 7 · 4 = 28, plus 3 is 31, carry the 3, . . .
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1.3 Karatsuba Multiplication 5

Back in third grade, you probably accepted that this algorithm is correct, meaning that

no matter what numbers x and y you start with, provided that all intermediate computations

are done properly, it eventually terminates with the product x · y of the two input numbers.

That is, you’re never going to get a wrong answer, and the algorithm can’t loop forever.

1.2.4 Analysis of the Number of Operations

Your third-grade teacher might not have discussed the number of primitive operations needed

to carry out this procedure to its conclusion. To compute the first partial product, we

multiplied 4 times each of the digits 5, 6, 7, 8 of the first number. This is four primitive

operations. Each carry might force us to add a single-digit number to a double-digit one,

for another two primitive operations. In general, computing a partial product involves n
multiplications (one per digit) and at most 2n additions (at most two per carry), for a total of

at most 3n primitive operations. There’s nothing special about the first partial product: every

partial product requires at most 3n operations. Because there are n partial products—one per

digit of the second number—computing all of them requires at most n · 3n = 3n2 primitive

operations. We still have to add them all up to compute the final answer, but this takes a

comparable number of operations (at most another 3n2, as you should check). Summarizing:

total number of operations ≤ constant
| {z }

=6

·n
2.

Thinking about how the amount of work the algorithm performs scales as the input

numbers grow bigger and bigger, we see that the work required grows quadratically with the

number of digits. If you double the length of the input numbers, the work required jumps by

a factor of 4. Quadruple their length and it jumps by a factor of 16, and so on.

1.2.5 Can We Do Better?

Depending on what type of third-grader you were, you might well have accepted this

procedure as the unique or at least optimal way to multiply two numbers. If you want to be a

serious algorithm designer, you’ll need to grow out of that kind of obedient timidity. The

classic algorithms book by Aho, Hopcroft, and Ullman, after iterating through a number of

algorithm design paradigms, has this to say:

“Perhaps the most important principle for the good algorithm designer is to

refuse to be content.”4

Or as I like to put it, every algorithm designer should adopt the mantra:

Can we do better?

This question is particularly apropos when you’re faced with a naive or straightforward

solution to a computational problem. In the third grade, you might not have asked if one

could do better than the straightforward integer multiplication algorithm. Now is the time to

ask, and answer, this question.

4Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design and Analysis of Computer Algorithms,

Addison-Wesley, 1974, page 70.
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6 Introduction

1.3 Karatsuba Multiplication

The algorithm design space is surprisingly rich, and there are certainly other interesting

methods of multiplying two integers beyond what you learned in the third grade. This section

describes a method called Karatsuba multiplication.5

1.3.1 A Concrete Example

To get a feel for Karatsuba multiplication, let’s re-use our previous example with x = 5678
and y = 1234. We’re going to execute a sequence of steps, quite different from the grade-

school algorithm, culminating in the product x · y. The sequence of steps should strike

you as very mysterious, like pulling a rabbit out of a hat; later in the section we’ll explain

exactly what Karatsuba multiplication is and why it works. The key point to appreciate now

is that there’s a dazzling array of options for solving computational problems like integer

multiplication.

First, to regard the first and second halves of x as numbers in their own right, we give

them the names a and b (so a = 56 and b = 78). Similarly, c and d denote 12 and 34,

respectively (Figure 1.2).

5678 

× 1234 

a b 

c d 

Figure 1.2: Thinking of four-digit numbers as pairs of two-digit numbers.

Next we’ll perform a sequence of operations that involve only the double-digit numbers

a, b, c, and d, and finally collect all the terms together in a magical way that results in the

product of x and y.

Step 1: Compute a · c = 56 · 12, which is 672 (as you’re welcome to check).

Step 2: Compute b · d = 78 · 34 = 2652.

The next two steps are still more inscrutable.

Step 3: Compute (a+ b) · (c+ d) = 134 · 46 = 6164.

Step 4: Subtract the results of the first two steps from the result of the third step:

6164− 672− 2652 = 2840.

Finally, we add up the results of steps 1, 2, and 4, but only after adding four trailing

zeroes to the answer in step 1 and two trailing zeroes to the answer in step 4.

5Discovered in 1960 by Anatoly Karatsuba, who at the time was a 23-year-old student.
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1.3 Karatsuba Multiplication 7

Step 5: Compute 104 ·672+102 ·2840+2652 = 6720000+284000+2652 = 7006652.

This is exactly the same (correct) result computed by the grade-school algorithm in

Section 1.2!

You should not have any intuition about what just happened. Rather, I hope that you

feel some mixture of bafflement and intrigue, and appreciate the fact that there seem to be

fundamentally different algorithms for multiplying integers than the one you learned as a

kid. Once you realize how rich the space of algorithms is, you have to wonder: can we do

better than the third-grade algorithm? Does the algorithm above already do better?

1.3.2 A Recursive Algorithm

Before tackling full-blown Karatsuba multiplication, let’s explore a simpler recursive ap-

proach to integer multiplication.6 A recursive algorithm for integer multiplication presum-

ably involves multiplications of numbers with fewer digits (like 12, 34, 56, and 78 in the

computation above).

In general, a number x with an even number n of digits can be expressed in terms of two

n/2-digit numbers, its first half a and second half b:

x = 10n/2 · a+ b.

Similarly, we can write

y = 10n/2 · c+ d.

To compute the product of x and y, let’s use the two expressions above and multiply out:

x · y = (10n/2 · a+ b) · (10n/2 · c+ d)

= 10n · (a · c) + 10n/2 · (a · d+ b · c) + b · d. (1.1)

Note that all of the multiplications in (1.1) are either between pairs of n/2-digit numbers or

involve a power of 10.7

The expression (1.1) suggests a recursive approach to multiplying two numbers. To

compute the product x · y, we compute the expression (1.1). The four relevant products (a · c,

a · d, b · c, and b · d) all concern numbers with fewer than n digits, so we can compute each

of them recursively. Once our four recursive calls come back to us with their answers, we

can compute the expression (1.1) in the obvious way: tack on n trailing zeroes to a · c, add

a · d and b · c (using grade-school addition) and tack on n/2 trailing zeroes to the result, and

finally add these two expressions to b · d.8 We summarize this algorithm, which we’ll call

RecIntMult, in the following pseudocode.9

6I’m assuming you’ve heard of recursion as part of your programming background. A recursive procedure

is one that invokes itself as a subroutine with a smaller input, until a base case is reached.
7For simplicity, we are assuming that n is a power of 2. A simple hack for enforcing this assumption is

to add an appropriate number of leading zeroes to x and y, which at most doubles their lengths. Alternatively,

when n is odd, it’s also fine to break x and y into two numbers with almost equal lengths.
8Recursive algorithms also need one or more base cases, so that they don’t keep calling themselves for the

rest of time. Here, the base case is: if x and y are 1-digit numbers, multiply them in one primitive operation and

return the result.
9In pseudocode, we use “=” to denote an equality test, and “:=” to denote a variable assignment.
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8 Introduction

RecIntMult

Input: two n-digit positive integers x and y.

Output: the product x · y.

Assumption: n is a power of 2.

if n = 1 then // base case
compute x · y in one step and return the result

else // recursive case

a, b := first and second halves of x
c, d := first and second halves of y
recursively compute ac := a · c, ad := a · d, bc := b · c, and

bd := b · d

compute 10n · ac+ 10n/2 · (ad+ bc) + bd using grade-school

addition and return the result

Is the RecIntMult algorithm faster or slower than the grade-school algorithm? You

shouldn’t necessarily have any intuition about this question, and the answer will have to wait

until Chapter 4.

1.3.3 Karatsuba Multiplication

Karatsuba multiplication is an optimized version of the RecIntMult algorithm. We again

start from the expansion (1.1) of x ·y in terms of a, b, c, and d. The RecIntMult algorithm

uses four recursive calls, one for each of the products in (1.1) between n/2-digit numbers.

But we don’t care about a · d or b · c, except inasmuch as we care about their sum a · d+ b · c.

With only three quantities that we care about—a · c, a · d+ b · c, and b · d—can we get away

with only three recursive calls? To see that we can, first use two recursive calls to compute

a · c and b · d, as before.

Step 1: Recursively compute a · c.

Step 2: Recursively compute b · d.

Instead of recursively computing a · d or b · c, we recursively compute the product of

a+ b and c+ d.10

Step 3: Compute a+ b and c+ d using grade-school addition, and recursively compute

(a+ b) · (c+ d).

The key trick in Karatsuba multiplication goes back to the early 19th-century math-

ematician Carl Friedrich Gauss, who was thinking about multiplying complex numbers.

Subtracting the results of the first two steps from the result of the third step gives exactly

what we want, the middle coefficient in (1.1) of a · d+ b · c:

(a+ b) · (c+ d)
| {z }

=a·c+a·d+b·c+b·d

−a · c− b · d = a · d+ b · c.

10The numbers a+ b and c+ d might have as many as (n/2) + 1 digits, but the algorithm still works fine.
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1.3 Karatsuba Multiplication 9

Step 4: Subtract the results of the first two steps from the result of the third step to obtain

a · d+ b · c.

The final step computes (1.1), as in the RecIntMult algorithm.

Step 5: Compute (1.1) by adding up the results of steps 1, 2, and 4, after adding n trailing

zeroes to the answer in step 1 and n/2 trailing zeroes to the answer in step 4.

Karatsuba

Input: two n-digit positive integers x and y.

Output: the product x · y.

Assumption: n is a power of 2.

if n = 1 then // base case
compute x · y in one step and return the result

else // recursive case

a, b := first and second halves of x
c, d := first and second halves of y
compute p := a+ b and q := c+ d using grade-school addition

recursively compute ac := a · c, bd := b · d, and pq := p · q
compute adbc := pq − ac− bd using grade-school addition

compute 10n · ac+ 10n/2 · adbc+ bd using grade-school

addition and return the result

Thus Karatsuba multiplication makes only three recursive calls! Saving a recursive call

should save on the overall running time, but by how much? Is the Karatsuba algorithm

faster than the grade-school multiplication algorithm? The answer is far from obvious, but it

is an easy application of the tools you’ll acquire in Chapter 4 for analyzing the running time

of such “divide-and-conquer” algorithms.

On Pseudocode

This book explains algorithms using a mixture of high-level pseudocode

and English (as in this section). I’m assuming that you have the skills to

translate such high-level descriptions into working code in your favorite

programming language. Several other books and resources on the Web offer

concrete implementations of various algorithms in specific programming

languages.

The first benefit of emphasizing high-level descriptions over language-

specific implementations is flexibility: while I assume familiarity with some

programming language, I don’t care which one. Second, this approach

promotes the understanding of algorithms at a deep and conceptual level,

unencumbered by low-level details. Seasoned programmers and computer

scientists generally think and communicate about algorithms at a similarly

high level.
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10 Introduction

Still, there is no substitute for the detailed understanding of an algo-

rithm that comes from providing your own working implementation of it.

I strongly encourage you to implement as many of the algorithms in this

book as you have time for. (It’s also a great excuse to pick up a new pro-

gramming language!) For guidance, see the end-of-chapter Programming

Problems and supporting test cases.

1.4 MergeSort: The Algorithm

This section and the next provide our first taste of analyzing the running time of a non-trivial

algorithm—the famous MergeSort algorithm.

1.4.1 Motivation

MergeSort is a relatively ancient algorithm, and was certainly known to John von Neu-

mann as early as 1945. Why begin a modern course on algorithms with such an old example?

Oldie but a goodie. Despite being over 70 years old, MergeSort is still one of the

methods of choice for sorting. It’s used all the time in practice, and is the default sorting

algorithm in a number of programming libraries.

Canonical divide-and-conquer algorithm. The “divide-and-conquer” algorithm design

paradigm is a general approach to solving problems, with applications in many different

domains. The basic idea is to break your problem into smaller subproblems, solve the

subproblems recursively, and finally combine the solutions to the subproblems into one

for the original problem. MergeSort is an ideal introduction to the divide-and-conquer

paradigm, the benefits it offers, and the analysis challenges it presents.

Calibrate your preparation. Our MergeSort discussion will give you a good indication

of whether your current skill set is a good match for this book. My assumption is that you

have the programming and mathematical backgrounds to (with some work) translate the

high-level idea of MergeSort into a working program in your favorite programming

language and to follow our running time analysis of the algorithm. If this and the next

section make sense, you’re in good shape for the rest of the book.

Motivates guiding principles for algorithm analysis. Our running time analysis of

MergeSort exposes a number of more general guiding principles, such as the quest for

running time bounds that hold for every input of a given size, and the importance of the rate

of growth of an algorithm’s running time (as a function of the input size).

Warm-up for the master method. We’ll analyze MergeSort using the “recursion tree

method,” which is a way of tallying up the operations performed by a recursive algorithm.

Chapter 4 builds on these ideas and culminates with the “master method,” a powerful

and easy-to-use tool for bounding the running time of many different divide-and-conquer

algorithms, including the RecIntMult and Karatsuba algorithms of Section 1.3.
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1.4.2 Sorting

Look around and you’ll notice that computers seem pretty good at sorting things instanta-

neously. Think of the list of contacts on your phone. Are they listed in the order that you

entered them? Of course not—that would be annoying, so they’re instead sorted alphabet-

ically for easy reference. Meanwhile, your favorite spreadsheet program has no trouble

sorting a large file according to whatever criterion you want. How do they do it?

Here’s a canonical version of the sorting problem:

Problem: Sorting

Input: An array of n numbers, in arbitrary order.

Output: An array of the same numbers, sorted from smallest to largest.

For example, given the input array

5 4 1 8 7 2 6 3 

the desired output array is

1 2 3 4 5 6 7 8 

In the example above, the eight numbers in the input array are distinct. Sorting isn’t

really any harder when there are duplicates, and it can even be easier. But to keep the

discussion as simple as possible, let’s assume—among friends—that the numbers in the

input array are always distinct. I strongly encourage you to think about how our sorting

algorithms need to be modified (if at all) to handle duplicates.11

If you don’t care about optimizing the running time, it’s not too difficult to come up with

a correct sorting algorithm. Perhaps the simplest approach is to first scan through the input

array to identify the minimum element and copy it over to the first element of the output

array; then do another scan to identify and copy over the second-smallest element; and so on.

This algorithm is called SelectionSort. You may have heard of InsertionSort,

which can be viewed as a slicker implementation of the same idea of iteratively growing

a prefix of the sorted output array. You might also know BubbleSort, in which you

identify adjacent pairs of elements that are out of order, and perform repeated swaps until

the entire array is sorted. All of these algorithms have quadratic running times, meaning

that—analogous to the grade-school multiplication algorithm in Section 1.2.3—the number

of operations performed on arrays of length n scales with n2, the square of the input length.

11In practice, there is often data (called the value) associated with each number (which is called the key). For

example, you might want to sort employee records (with the name, salary, etc.), using social security numbers as

keys. We focus on sorting the keys, with the understanding that each key retains its associated data.
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