

Index

```
abstract notion of curvature, 191
Ahlfors, Lars V., 70
Ahlfors/Schwarz lemma, 72
analytic capacity, 91
analytic function, 2
annulus
  automorphism group of, 123
  compactness of automorphism
       group of, 124
  conformal mappings of, 156
  non-transitivity of, 131
approach region, 118
arc length, 30, 34
area measure, 138
argument principle, 1, 10
Ascoli/Arzelà theorem, 17, 85
attitude matrix, 193
automorphism group, 121, 170
  characterization of compactness of,
        126
  compactness of, 123
  examples of, 122
  topology on, 123
  of \mathcal{B}(0, 1), 170
ball, 166
   and bidisc, biholomorphic
        inequivalence of, 179
   automorphisms of, 178
   in \mathbb{C}^2, 161
```

```
Bell, Steven R., 155, 187
Bergman kernel, 138, 139
  constructed with an orthonormal
       expansion, 145
  constructed with differential
       equations, 147
  four characterizing properties of,
       139
  positivity of, 152
  real analyticity of, 157
  transformation under conformal
       maps, 141
Bergman metric, 151
  conformal invariance of, 153
  extremal curves in, 158
  for the disc, 153
  geodesics in, 157
  orthogonal trajectories in, 158
  real analyticity of, 157
Bergman space, 139
  of annulus, basis for, 156
Bergman, Stefan, 137
bidisc, 166
  in \mathbb{C}^2, 162
  automorphisms of, 175
biholomorphic mapping, 162, 169
  of the unit ball, 170
   problem, 187
biholomorphisms of complete circular
     domains, 174
```

213

Bloch's principle, 82	C^k curve, examples, 106
Bolyai, Janos, 58	closed, k times continuously
Brouwer invariance of domain, 123	differentiable curve, 105
	closed, twice continuously
calculus	differentiable curve, 105
in the complex domain, 38	coincidence of different definitions of
notion of curvature, 191	curvature, 201
canonical invariant metric, 138	compactly divergent, 79, 84
Carathéodory, Constantin, 89	compactness, 16, 17
and Kobayashi metrics, comparison	complete circular domain, 168
of, 94	completeness
indicatrix, 182	of a metric, 37
isometries, 93	of the Carathéodory metric, 113,
length, 180	117
length of a curve, 181	of the Kobayashi metric, 113
metric, 89, 90	complex
completeness of, 105	analysis, 29
distance-decreasing	analysis of several variables, 161
property, 90, 91	calculus notation, 41
examples, 91	derivative, 2, 39
for the disc, 93	differentiable, 2
invariance of, 90	differential operators, 38
isometries of, 92	line integral, 4
non-degeneracy of, 95	plane and negative curvature, 134
upper estimate for, 116	polynomials, 6
theorem, 22, 123	conformal map, 45
Cartan structural equations, 198	conformal self-maps of the disc, 13,
Cartan's theorem, 172	14, 45
Casorati-Weierstrass theorem, 23, 78	conformally equivalent domains, 19
Cauchy	connection forms, 196
estimates, 1, 8	continuously differentiable, 2, 3
integral formula, 1, 6	contraction mappings, 57
in \mathbb{C}^2 , 166	convergence of derivatives, 8
theorem, 4	convergent power series, 6
kernel, 140	cotangent vector, 42
Cauchy-Riemann equations, 2, 39	covariant differentiation, 193
center of curvature, 111	covector fields, 194
chain rule for differentiation, 40	cross product, 192
characterization of the disc in terms of	curvature, 30, 67
the Carathéodory and Kobayashi	holomorphic functions, 73
metrics, 97	definition of, 67
Chern, S. S., 187	for a smooth, two-dimensional
circle of curvature, 111	surface, 191
C^k boundary, 105	invariance of, 68
alternative definition, 106	of the Euclidean metric, 69

of the Poincaré metric, 69	omitted values, 75
provenance of, 68	equibounded, 17
curve of least length, 30	equicontinuity, 17
curve of least Poincaré length, 50	equicontinuous, 17
-	essential singularity, 23, 24
defining function, 106	Euclid's axioms, 60
differential	Hilbert's rendition of, 60
equations, 29	Euclidean
forms, 191, 195	dot product, 195
invariants, 187	length, 31, 33, 181
dilations, 14	notion of length, 35
direction	exterior differentiation, 195
of greatest curvature, 194	externally tangent disc, 111
of least curvature, 194	extremal function, 89
directional differentiation, 193	
disc	factorization of polynomials, 9
as complete metric space, 49	Farkas-Ritt theorem, 56
automorphism group of, 122	Fefferman, Charles, 155, 187
automorphism group, transitivity	finitely connected domain,
of, 131	automorphism group of, 125
characterization by	fixed point
non-compactness of	as the limit of iterates, 57
automorphism group, 125	of a holomorphic function, 57
non-compactness of automorphism	function of two complex variables,
group of, 125	continuity of, 164
notation, 1	differentiability of, 164
tautness of, 135	fundamental theorem of algebra, 9, 78
distance in a metric, 37	
distance-decreasing property	Gauss quote about Bolyai's work, 59
of holomorphic mappings, 181	Gaussian curvature, 69, 194, 196, 201
of the Poincaré metric, 72	in terms of $\omega_{i,j}$, 196
of biholomorphic mappings, 182	intrinsic calculation of, 200
domain	generalized Schwarz lemma, 86
of convergence of a power series,	geodesic, 35
169	arc, 51
of holomorphy, 162	in Bergman metric, 157
with C^k boundary, 106	in hyperbolic geometry, 62
with infinitely many holes, 106	Gram-Schmidt orthonormalization
with transitive automorphism	procedure, 192
group, 131	great circular arc, 83
dual covector fields, 201	Green's function, 150
elliptic functions, 156	Hahn's theorem, 157
elliptic modular function, 26	harmonic
entire function, 74	analysis, 29

harmonic (continued)	Jacobian matrix
function, 41	complex, 172
Hartogs	real, 172
domain, 163	,
extension phenomenon, 162	k times continuously differentiable
phenomenon, 163	curve, 105
Heine–Borel theorem, 16	Kähler metric, 32, 155
Hermitian metric, 31	Kellogg, Oliver, 155
Hilbert space, 138, 143	Kobayashi, S.
holomorphic function, 2	and Poincaré metrics, comparison
differentiability of, 166	of, 97
distance-decreasing property of, 55	indicatrix, 182
examples of in two variables, 165	of the ball, 183
much like polynomials, 8	of the bidisc, 184
power series expansion of, 166	isometries, 95
of two complex variables, 165	length, 181
holomorphic logarithm, 41	of a curve, 181
Hurwitz's theorem, 10, 84	metric, 90, 94
hyperbolic	completeness of, 105
disc, 58	distance-decreasing property
domain, 133	of, 90, 95
hyperbolicity	extremal property of, 133
in terms of curvature, 134	invariance of, 90
of multi-punctured plane, 134	non-degeneracy of, 95
Pomerone Printe, 101	Kobayashi/Royden metric, 90, 94
infinitely	distance-decreasing property of,
connected domain with	90
non-compact automorphism	invariance of, 90
group, 132	,
differentiable boundary, 106	Laplace operator, 40
differentiable function, 106	Laplacian, 155
inner product, 139	length
internally tangent disc, 111	in a metric, 34
intrinsic geometry, 194	of a continuously differentiable
invariance	curve, 30
of the Carathéodory indicatrix,	of a curve in the Poincaré metric,
183	34
of the Kobayashi indicatrix, 183	of a piecewise continuously
inverse function theorem, 110	differentiable curve, 34
inversion, 14, 156	Levi, E.E., 164
isometries, 42, 43	problem, 164
composition of, 45	Lindelöf principle, 118, 119
properties of, 43	line, 61
rigidity of, 54	linear fractional transformation, 14,
that fix a point, 100	83

linear properties of complex	orthogonal matrix, 193
derivatives, 40	osculating discs, 111
Liouville's theorem, 1, 9, 74, 81,	Osgood's theorem, 170
162	Delintered Devil 188
Lobachevsky, Nicolai, 58	Painlevé, Paul, 155
Lusin area integral, 140	theorem, 22, 155
	parallel, 60
Marty's criterion, 84	parallel postulate, 61
Marty's theorem, 86	independence of, 64
maximum principle, 1, 11, 123	parametrization of a surface, 191
mean value property, 11	Picard, Emil,
meromorphic functions, 83	great theorem, 25, 87
metric, 30, 31	little theorem, 25, 78
axioms, 37	geometric proof of, 78
,	proof of, 27
examples of, 32	theorems, 25, 74, 81, 133
geometry, 1	piecewise continuously differentiable
in two complex variables, 180	curve, 3
of negative curvature on	plane and negative curvature, 134
twice-punctured plane, 75	Playfair's formulation of the parallel
metrics, comparability of, 103	postulate, 61
model for geometry, 61	Poincaré, Henri
Möbius transformation, 13, 46,	-Bergman metric, 151
61	distance, 47
Montel theorem, 86	metric, 32, 45, 154
Montel's theorem, 1, 16, 17, 80	balls in, 48
morphisms, 42	characterization of, 52
Moser, Jurgen, 187	completeness of, 49
	conformal invariance of, 45
nearest boundary point, 110	52
negatively oriented curve, 3	explicit calculation of, 47
neighborhood in two complex	maps which preserve, 53
variables, 165	neighborhood basis for, 48
non-Euclidean, 58	program, 187
non-Euclidean geometry, 61	theorem, 164
example of, 63	points in hyperbolic geometry, 63
nondegeneracy of the Kobayashi	pole, 23, 24
metric, 133	at infinity, 24
nontangential approach, optimality of,	positively oriented curve, 3
121	potential function, 155
nontangential	power series
approach region, 118	coefficients, 7
limit, 118	expansion, 2
normal family, 16, 80, 83, 86, 171	principal
normal family, examples of, 80	curvatures, 194
normally convergent, 79	normal, 111

product rule for differentiation, 40	singularities of a holomorphic
pseudohyperbolic metric, 155	function, 22
pullback, 42	special function space, 138
metric, 83	spherical
of a metric, 42	derivative, 85
of a metric under a conjugate	metric, 69, 82
holomorphic function, 42	Stolz region, 118
punctured disc, 116, 132	structural equations of Cartan, 69
punctured plane	sum rule for differentiation, 40
and negative curvature, 134	
non-tautness of, 135	tangent
	bundle, 31
radial boundary limit, 118	space, 192
removable singularity, 23, 24	vector, 31, 33, 42
at infinity, 24	taut domain, 135
reproducing	tautness and hyperbolicity, 135
kernel, 137	Taylor series, 7
property, 140	topologically trivial curve, 4
Riemann mapping	topology induced by invariant metrics
function, 89	105
Riemann mapping theorem, 16, 18,	transcendental entire functions, 78
19, 89, 130, 161	transitive group action, 130
outline of proof, 19	translations, 14
Riemann removable singularities	tubular neighborhood, 108
theorem, 7, 23	twice continuously differentiable
Riemann's philosophy, 181	curve, 105
Riemannian metric, 32	
rigid motions of the Euclidean plane,	undefinable terms of geometry, 60
44	uniform continuity, 17
rotation, 156	unit disc, 2
,	unit inward normal, 108
scalar multiplication rule for	unit outward normal, 108
differentiation, 40	unitary
Schwarz lemma, 1, 12, 14, 55, 94	biholomorphisms, 178
Ahlfors's version of, 70	unitary matrix, 178
in two complex variables, 172	• ,
uniqueness portion, 102	value distribution theory, 27
Schwarz-Pick lemma, 15, 55	vector
set of uniqueness for a holomorphic	attached to base point, 32
function, 171	field, 192
several complex variables, 164	with position, 33
shape operator, 193	* · · · · · · · · · · · · · · · · · · ·
action of, 194	Warschawski, Stefan, 155
simple closed curve 3	Weierstrass's theorem 163

Index 219

zeros
of a function given by a power
series, 8
of holomorphic functions, 31