Cambridge University Press

0883850354 - Complex Analysis: The Geometric Viewpoint, Second Edition
Steven G. Krantz

Excerpt

More information

CHAPTER ()

Principal Ideas of Classical
Function Theory

1. A Glimpse of Complex Analysis

The purpose of this book is to explain how various aspects of complex
analysis can be understood both naturally and elegantly from the point
of view of metric geometry. Thus, in order to set the stage for our work,
we begin with a review of some of the principal ideas in complex analy-
sis. A good companion volume for this introductory material is [GRK].
See also [BOAS] and [KR3].

Central to the subject are the Cauchy integral theorem and the
Cauchy integral formula. From these follow the Cauchy estimates,
Liouville’s theorem, the maximum principle, Schwarz’s lemma, the
argument principle, Montel’s theorem, and most of the other power-
ful and elegant results which are basic to the subject. We will discuss
these results in essay form. The proofs which we provide are more con-
ceptual than rigorous: the aim is to depict a flow of ideas rather than
absolute mathematical precision.

We let z € C denote a complex variable. If P € C and r > 0, then
we use the standard notation
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2 Principal Ideas of Classical Function Theory

DP,r)Y=1{zeC:|z—P| <r},
D(P,ry={ze€C:|lz—P| <r},
ID(P,ry={z€C:|z— P|=r}.

We often use the lone symbol D to denote the unit disc D(0, 1). A
connected open set U € C is called a domain.

Complex analysis consists of the study of holomorphic functions.
Let F be a complex-valued continuously differentiable function (in the
sense of multivariable calculus) on a domain U in the complex plane.
We write F' = u + iv to distinguish the real and imaginary parts of F.
Then F is said to be holomorphic, or analytic, if it satisfies the Cauchy—
Riemann equations:

au av au av

— = — and — =

ax dy dy dx
This definition is equivalent to other familiar definitions, such as that
in terms of the complex derivative, which we now discuss. If F is a
function on a domain U in the complex plane and if P € U, then F is
said to possess a complex derivative, or to be complex differentiable, at
P if

Fpy=2E (p) = tim £ ZFE)
a3z z—P z— P
exists. The function F is holomorphic on U if F possesses the complex
derivative at each point of U.

Another useful approach to complex analytic (or holomorphic)
functions is by way of power series: a function on a domain U is holo-
morphic if it has a convergent power series expansion ) ;4 (z — P)J
about each point P of U.

The complex derivative definition of “holomorphic” is of great
historical interest. Much effort was expended in the early days of the
subject in proving that a function which is complex differentiable at
each point of a domain U is in fact automatically continuously dif-
ferentiable (in the usual sense of multivariable calculus), and from
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A Glimpse of Complex Analysis 3

that point it is routine to check that the function satisfies the Cauchy—
Riemann equations. The converse implication is a straightforward ex-
ercise. So, in the end, either definition is correct. From our perspective
the Cauchy—Riemann equations provide the most useful point of view.
This assertion will become more transparent as we develop the notion
of complex integration.

Definition 1. A C!, or continuously differentiable, curve in a domain
U <€ Cis a function y : [a,b] — U from an interval in the real
line into U such that ¢’ exists at each point of [a, b] (in the one-sided
sense at the endpoints) and is continuous on [a, b]. When there is no
danger of confusion, we sometimes use the symbol y to denote the set
of points {y(¢) : ¢t € [a, b]} as well as the function from [a, b] to U.

A piecewise continuously differentiable curve is a single continu-
ous curve which can be written as a finite union of continuously differ-
entiable curves—Figure 1. A curve is called closed if y(a) = y(b).
It is called simple closed if it is closed and not self-intersecting:
y(s) = y(t) and s # ¢ together imply either that s = a andt = b
orthats = bandt = a.

Figure 1.

A simple closed curve y is said to be positively oriented if the
region interior to the curve is to the left of the curve while it is being
traversed from ¢ = a tot = b. See Figure 2. Otherwise it is called neg-
atively oriented. If F is a continuous function on our open set U, then

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0883850354
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0883850354 - Complex Analysis: The Geometric Viewpoint, Second Edition
Steven G. Krantz

Excerpt

More information

4 Principal Ideas of Classical Function Theory

Figure 2.

we define its complex line integral over a continuously differentiable
curve y in U to be the quantity

b
f F(2)dz :/ Fy@®)-vy'@) dr.
y a

Here the dot - denotes multiplication of complex numbers.

Notice that, in analogy with the study of directed curves in
Stokes’s formula, the derivative of the curve is incorporated into the
integral. In case y is only piecewise continuously differentiable, we

define
f F(z)dz
2

by integrating along each of the continuously differentiable pieces and
adding.

Now we may formulate the Cauchy integral theorem. A rigorous
treatment of this result requires a discussion of deformation of curves.
However, since this is only a review, we may be a bit imprecise. Let y
be a closed curve in a domain U and suppose that y (more precisely,
the image of y) can be continuously deformed to a point within U. We
shall call such a curve “topologically trivial (with respect to U).” In
Figure 3, y, is topologically trivial but y; is not. We have:
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A Glimpse of Complex Analysis 5

Figure 3.

Theorem 2. Let F be a holomorphic function on a domain U and let y
be a topologically trivial, piecewise continuously differentiable, closed
curve in U. Then

fF(z)dz:O.
Y

This theorem may be proved, using the Cauchy—Riemann equations, as
a direct application of Stokes’s theorem (see [GRK]). It will tell us, in
effect, that a holomorphic function is strongly influenced on an open
set by its behavior on the boundary of that set.

Now fix a point P in U and let y be a positively oriented, topo-
logically trivial, simple closed curve in U with P in its interior. Let F
be holomorphic on U. By suitable limiting arguments, we may apply
the Cauchy integral theorem to the function

F)—F(P)
— if P,

Go=] ¢c-r 7
F!(P) ifc = P.
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6 Principal Ideas of Classical Function Theory

After some calculations, the result is that

Fpy = — ¢ T8 g
i J, ¢ —P
This is the Cauchy integral formula. It shows that a holomorphic func-
tion is completely determined in the interior of y by its behavior on
the boundary curve y itself. From this there quickly flows a wealth of
information.

Theorem 3. Let F be holomorphic on a domain U and let P € U.
Assume that the closed disc

D(P,ry={z:|z—~P| <r}

is contained in U. Then F may be written on D(P,r) as a convergent
power series:

(e, 0]
F(z) = Zaj(z —P).
j=0
The convergence is absolute and uniform on D(P,r).

Thus we see that, in a natural sense, holomorphic functions are gener-
alizations of complex polynomials. The power series expansion is, in
general, only local. But for many purposes this is sufficient.

Proof of Theorem 3. Observe that, for |z — P| < rand [ — P| = r,
we may write

1 1 1

Ty _p e
Cz(Pl—gfls

Since |z — P| < r = |¢ — P, we have that

z— P
c—P

< 1.
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A Glimpse of Complex Analysis 7

Thus

IR = (z - P )f
t—z (—P —\¢—P
Substituting this power series expansion for the Cauchy kernel into the
Cauchy integral formula on D(P, r) gives the desired power series ex-

pansion for the holomorphic function F.
]

As an added bonus, the proof gives us a formula for the series
coefficients a;:

1 F(©)

aj :% y—(;‘_P)j"'I d;

Just as in the theory of Taylor series, it turns out that the coefficients a;
must also be given by
1 (dF P
4= 5\ ) P

We conclude that

o/ F J! F()

— | (P)=—— @ ————d¢.

(azj)< ) 27”.56(;_},),“ ¢ )

Corollary 3.1. (Riemann removable singularities theorem). We let
F be a holomorphic function on a punctured disc D'(P,r) = D(P, )\
{P}. If F is bounded, then F continues analytically to the entire disc
D(P,r). That is, there is a holomorphic function F on D(P,r) such
that F|p, p = F.

Sketch of Proof. Assume without loss of generality that P = 0. Con-
sider the function G(z) that is defined to equal z2 - Fon D'(P,r) and
to equal 0 at P = 0. Then G is continuously differentiable on D(P, r)
and satisfies the Cauchy-Riemann equations.
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8 Principal Ideas of Classical Function Theory

The leading term of the power series expansion of G about 0 is of
the form apz?. Thus the holomorphic function G may be divided by z2
to define a holomorphic function F on D(P, r) which agrees with F
on D'(P,r). ]

It is a standard fact from the theory of power series that the zeros
of a function given by a power series expansion cannot accumulate in
the interior of the domain of that function. Thus we have:

Theorem 4. If F is holomorphic on a domain U, then
{z € U : F(z) = 0} has no accumulation point in U.

This theorem once again bears out the dictum that holomorphic func-
tions are much like polynomials: The zero set of a polynomial ag +
a1z + apz® + - + a,z" is discrete, indeed it is finite.

The Cauchy estimates on the derivatives of a holomorphic func-
tion in terms of the supremum of the function follow from direct esti-
mation of the formula (x):

Theorem 5. Let F be a holomorphic function on a domain U that
contains the closed disc D(P, R). Let M be the supremum of |F| on
D(P, R). Then the derivatives of F satisfy the estimates

3/
@)

An immediate corollary of the Cauchy estimates is the fact that
if a sequence of holomorphic functions converges then so does the se-
quence of its derivatives:

jl-M
RJ

=

Corollary 5.1. Let {F;} be a sequence of holomorphic functions on
a domain Q2. Suppose that the sequence converges uniformly on com-
pact subsets of Q. Then the sequence {F}} also converges uniformly on
compact subsets of Q.
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A Glimpse of Complex Analysis 9

Notice that the Cauchy estimates tell us that if F is bounded on a
large disc, then its derivatives are relatively small at the center of the
disc; this assertion is exploited in the next result.

Theorem 6. (Liouville). Ler F be a holomorphic function on the com-
plex plane (an entire function) which is also bounded. Then F must be
a constant.

Proof. Assume without loss of generality that | F'| is bounded by 1. Fix
a point P in the plane. Applying the Cauchy estimates to F on the disc
D(P, R) yields that

, 1
IF(P) = 27

Letting R tend to +oc yields that F'(P) = 0. Since P was arbitrary,
we see that F' = 0. A simple calculus exercise now shows that F must
be constant. ]

One of the most dramatic applications of Liouville’s theorem is in
the proof of the fundamental theorem of algebra. That is our next task:

Theorem 7. Let p(z) = ag+ajz+azz®+- - -+ayz* be anon-constant
polynomial. Then there is a point z at which p vanishes.

Proof. Suppose not. Then F(z) = 1/p(z) is an entire function. Since a
non-constant polynomial blows up at infinity, ' must be bounded. By
Liouville’s theorem, F is a constant. Hence p is constant, and therefore
has degree zero. This contradiction completes the proof. |

Let k be the degree of the polynomial p. Notice that if the poly-
nomial p vanishes at the point |, then the Euclidean algorithm implies
that p is divisible by (z — r): that is to say, p(z) = (z —r1) - p1(2)
for a polynomial p; of degree k — 1. If k — 1 > 1, then we may apply
the preceding result to p1. Continuing in this fashion, we obtain that p
may be expressed as a product of linear factors:

p@)=(—ry)-(2—r2)-- @ —=rp).
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10 Principal Ideas of Classical Function Theory

We conclude this brief overview of elementary complex analysis
by recalling the argument principle and Hurwitz’s theorem.

Theorem 8. (The Argument Principle). Letr F be holomorphic on
a domain U and let y be a topologically trivial, positively oriented,
simple closed curve in U. Assume that F does not vanish on y. We can
be sure, by Theorem 4, that there are at most finitely many, say k, zeros
of F inside y (counting multiplicity). Then we have that

1 F'(¢)

" 27 J, FQO)

de.

Sketch of Proof. By an easy reduction, it is enough to prove the result
when k = 1. A second reduction allows us to consider the case when
v is a positively oriented circle. After a change of coordinates, let us
suppose that F has a simple zero at the point P = 0 inside y. By
writing out the power series expansions for F and for F’, we find that

F'¢g) 1

-~ =7 Th),

F@E) ¢
where % is holomorphic near 0. Of course, / integrates to 0, by the
Cauchy integral theorem. And it is easily calculated that

1 1
2xi J, ¢

completing the proof. [

Let U be a domain and {F;} a sequence of holomorphic functions
on U that converges, uniformly on compact sets, to a limit function F.
It is an easy consequence of the Cauchy integral formula that the limit
function is also holomorphic. Let us now use the argument principle to
see how the zeros of F are related to the zeros of the F;’s.

Theorem 9. (Hurwitz’s Theorem). With {F;} and F as above, if the
F;’s are all zero-free, then either F is zero-free or F is identically zero.
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