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Introduction

In this chapter we introduce logical reasoning and the idea of mechanizing it,
touching briefly on important historical developments. We lay the ground-
work for what follows by discussing some of the most fundamental ideas in
logic as well as illustrating how symbolic methods can be implemented on a
computer.

1.1 What is logical reasoning?

There are many reasons for believing that something is true. It may seem
obvious or at least immediately plausible, we may have been told it by
our parents, or it may be strikingly consistent with the outcome of relevant
scientific experiments. Though often reliable, such methods of judgement are
not infallible, having been used, respectively, to persuade people that the
Earth is flat, that Santa Claus exists, and that atoms cannot be subdivided
into smaller particles.

What distinguishes logical reasoning is that it attempts to avoid any unjus-
tified assumptions and confine itself to inferences that are infallible and
beyond reasonable dispute. To avoid making any unwarranted assumptions,
logical reasoning cannot rely on any special properties of the objects or con-
cepts being reasoned about. This means that logical reasoning must abstract
away from all such special features and be equally valid when applied in other
domains. Arguments are accepted as logical based on their conformance to
a general form rather than because of the specific content they treat. For
instance, compare this traditional example:

All men are mortal
Socrates is a man
Therefore Socrates is mortal
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2 Introduction

with the following reasoning drawn from mathematics:

All positive integers are the sum of four integer squares
15 is a positive integer
Therefore 15 is the sum of four integer squares

These two arguments are both correct, and both share a common pattern:

All X are Y
a is X
Therefore a is Y

This pattern of inference is logically valid, since its validity does not
depend on the content: the meanings of ‘positive integer’, ‘mortal’ etc. are
irrelevant. We can substitute anything we like for these X, Y and a, pro-
vided we respect grammatical categories, and the statement is still valid. By
contrast, consider the following reasoning:

All Athenians are Greek
Socrates is an Athenian
Therefore Socrates is mortal

Even though the conclusion is perfectly true, this is not logically valid,
because it does depend on the content of the terms involved. Other argu-
ments with the same superficial form may well be false, e.g.

All Athenians are Greek
Socrates is an Athenian
Therefore Socrates is beardless

The first argument can, however, be turned into a logically valid one
by making explicit a hidden assumption ‘all Greeks are mortal’. Now the
argument is an instance of the general logically valid form:

All G are M
All A are G
s is A
Therefore s is M

At first sight, this forensic analysis of reasoning may not seem very impres-
sive. Logically valid reasoning never tells us anything fundamentally new
about the world – as Wittgenstein (1922) says, ‘I know nothing about the
weather when I know that it is either raining or not raining’. In other words,
if we do learn something new about the world from a chain of reasoning,
it must contain a step that is not purely logical. Russell, quoted in Schilpp
(1944) says:
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1.1 What is logical reasoning? 3

Hegel, who deduced from pure logic the whole nature of the world, including the
non-existence of asteroids, was only enabled to do so by his logical incompetence.†

But logical analysis can bring out clearly the necessary relationships
between facts about the real world and show just where possibly unwar-
ranted assumptions enter into them. For example, from ‘if it has just rained,
the ground is wet’ it follows logically that ‘if the ground is not wet, it has not
just rained’. This is an instance of a general principle called contraposition:
from ‘if P then Q’ it follows that ‘if not Q then not P ’. However, passing
from ‘if P then Q’ to ‘if Q then P ’ is not valid in general, and we see in this
case that we cannot deduce ‘if the ground is wet, it has just rained’, because
it might have become wet through a burst pipe or device for irrigation.

Such examples may be, as Locke (1689) put it, ‘trifling’, but elementary
logical fallacies of this kind are often encountered. More substantially, deduc-
tions in mathematics are very far from trifling, but have preoccupied and
often defeated some of the greatest intellects in human history. Enormously
lengthy and complex chains of logical deduction can lead from simple and
apparently indubitable assumptions to sophisticated and unintuitive theo-
rems, as Hobbes memorably discovered (Aubrey 1898):

Being in a Gentleman’s Library, Euclid’s Elements lay open, and ’twas the 47 El.
libri 1 [Pythagoras’s Theorem]. He read the proposition. By G—, sayd he (he would
now and then sweare an emphaticall Oath by way of emphasis) this is impossible!
So he reads the Demonstration of it, which referred him back to such a Proposition;
which proposition he read. That referred him back to another, which he also read.
Et sic deinceps [and so on] that at last he was demonstratively convinced of that
trueth. This made him in love with Geometry.

Indeed, Euclid’s seminal work Elements of Geometry established a particu-
lar style of reasoning that, further refined, forms the backbone of present-day
mathematics. This style consists in asserting a small number of axioms, pre-
sumably with mathematical content, and deducing consequences from them
using purely logical reasoning.‡ Euclid himself didn’t quite achieve a com-
plete separation of logical and non-logical, but his work was finally perfected
by Hilbert (1899) and Tarski (1959), who made explicit some assumptions
such as ‘Pasch’s axiom’.

† To be fair to Hegel, the word logic was often used in a broader sense until quite recently, and
what we consider logic would have been called specifically deductive logic, as distinct from
inductive logic, the drawing of conclusions from observed data as in the physical sciences.

‡ Arguably this approach is foreshadowed in the Socratic method, as reported by Plato. Socrates
would win arguments by leading his hapless interlocutors from their views through chains
of apparently inevitable consequences. When absurd consequences were derived, the initial
position was rendered untenable. For this method to have its uncanny force, there must be no
doubt at all over the steps, and no hidden assumptions must be sneaked in.
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4 Introduction

1.2 Calculemus!

‘Reasoning is reckoning’. In the epigraph of this book we quoted Hobbes on
the similarity between logical reasoning and numerical calculation. While
Hobbes deserves credit for making this better known, the idea wasn’t new
even in 1651.† Indeed the Greek word logos, used by Plato and Aristotle to
mean reason or logical thought, can also in other contexts mean computation
or reckoning. When the works of the ancient Greek philosophers became
well known in medieval Europe, logos was usually translated into ratio, the
Latin word for reckoning (hence the English words rational, ratiocination,
etc.). Even in current English, one sometimes hears ‘I reckon that . . . ’, where
‘reckon’ refers to some kind of reasoning rather than literally to computation.

However, the connection between reasoning and reckoning remained little
more than a suggestive slogan until the work of Gottfried Wilhelm von Leib-
niz (1646–1716). Leibniz believed that a system for reasoning by calculation
must contain two essential components:

• a universal language (characteristica universalis) in which anything can
be expressed;

• a calculus of reasoning (calculus ratiocinator) for deciding the truth of
assertions expressed in the characteristica.

Leibniz dreamed of a time when disputants unable to agree would not
waste much time in futile argument, but would instead translate their dis-
agreement into the characteristica and say to each other ‘calculemus’ (let us
calculate). He may even have entertained the idea of having a machine do the
calculations. By this time various mechanical calculating devices had been
designed and constructed, and Leibniz himself in 1671 designed a machine
capable of multiplying, remarking:

It is unworthy of excellent men to lose hours like slaves in the labour of calculations
which could safely be relegated to anyone else if machines were used.

So Leibniz foresaw the essential components that make automated reason-
ing possible: a language for expressing ideas precisely, rules of calculation for
manipulating ideas in the language, and the mechanization of such calcula-
tion. Leibniz’s concrete accomplishments in bringing these ideas to fruition
were limited, and remained little-known until recently. But though his work
had limited direct influence on technical developments, his dream still res-
onates today.

† The Epicurian philosopher Philodemus, writing in the first century B.C., introduced the term
logisticos (λoγιστικóς) to describe logic as the science of calculation.
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1.3 Symbolism 5

1.3 Symbolism

Leibniz was right to draw attention to the essential first step of developing
an appropriate language. But he was far too ambitious in wanting to express
all aspects of human thought. Eventual progress came rather by extending
the scope of the symbolic notations already used in mathematics. As an
example of this notation, we would nowadays write ‘x2 ≤ y + z’ rather than
‘x multiplied by itself is less than or equal to the sum of y and z’. Over time,
more and more of mathematics has come to be expressed in formal symbolic
notation, replacing natural language renderings. Several sound reasons can
be identified.

First, a well-chosen symbolic form is usually shorter, less cluttered with
irrelevancies, and helps to express ideas more briefly and intuitively (at
least to cognoscenti). For example Leibniz’s own notation for differentiation,
dy/dx, nicely captures the idea of a ratio of small differences, and makes
theorems like the chain rule dy/dx = dy/du · du/dx look plausible based on
the analogy with ordinary algebra.

Second, using a more stylized form of expression can avoid some of the
ambiguities of everyday language, and hence communicate meaning with
more precision. Doubts over the exact meanings of words are common in
many areas, particularly law.† Mathematics is not immune from similar basic
disagreements over exactly what a theorem says or what its conditions of
validity are, and the consensus on such points can change over time (Lakatos
1976; Lakatos 1980).

Finally, and perhaps most importantly, a well-chosen symbolic notation
can contribute to making mathematical reasoning itself easier. A simple but
outstanding example is the ‘positional’ representation of numbers, where a
number is represented by a sequence of numerals each implicitly multiplied
by a certain power of a ‘base’. In decimal the base is 10 and we understand
the string of digits ‘179’ to mean:

179 = 1 × 102 + 7 × 101 + 9 × 100.

In binary (currently used by most digital computers) the base is 2 and
the same number is represented by the string 10110011:

10110011 = 1×27 +0×26 +1×25 +1×24 +0×23 +0×22 +1×21 +1×20.

† For example ‘Since the object of ss 423 and 425 of the Insolvency Act 1986 was to remedy the
avoidance of debts, the word ‘and’ between paragraphs (a) and (b) of s 423(2) must be read
conjunctively and not disjunctively.’ (Case Summaries, Independent newspaper, 27th December
1993.)
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6 Introduction

These positional systems make it very easy to perform important operations
on numbers like comparing, adding and multiplying; by contrast, the sys-
tem of Roman numerals requires more involved algorithms, though there is
evidence that many Romans were adept at such calculations (Maher and
Makowski 2001). For example, we are normally taught in school to add dec-
imal numbers digit-by-digit from the right, propagating a carry leftwards
by adding one in the next column. Once it becomes second nature to fol-
low the rules, we can, and often do, forget about the underlying meaning
of these sequences of numerals. Similarly, we might transform an equation
x−3 = 5−x into x = 3+5−x and then to 2x = 5+3 without pausing each
time to think about why these rules about moving things from one side of
the equation to the other are valid. As Whitehead (1919) says, symbolism
and formal rules of manipulation:

[. . . ] have invariably been introduced to make things easy. [. . . ] by the aid of sym-
bolism, we can make transitions in reasoning almost mechanically by the eye, which
otherwise would call into play the higher faculties of the brain. [. . . ] Civilisation
advances by extending the number of important operations which can be performed
without thinking about them.

Indeed, such formal rules can be followed reliably by people who do not
understand the underlying justification, or by computers. After all, com-
puters are expressly designed to follow formal rules (programs) quickly and
reliably. They do so without regard to the underlying justification, and will
faithfully follow even erroneous sets of rules (programs with ‘bugs’).

1.4 Boole’s algebra of logic

The word algebra is derived from the Arabic ‘al-jabr’, and was first used in
the ninth century by Mohammed al-Khwarizmi (ca. 780–850), whose name
lies at the root of the word ‘algorithm’. The term ‘al-jabr’ literally means
‘reunion’, but al-Khwarizmi used it to describe in particular his method of
solving equations by collecting together (‘reuniting’) like terms, e.g. passing
from x + 4 = 6 − x to 2x = 6 − 4 and so to the solution x = 1.† Over the
following centuries, through the European renaissance, algebra continued to
mean, essentially, rules of manipulation for solving equations.

During the nineteenth century, algebra in the traditional sense reached its
limits. One of the central preoccupations had been the solving of equations
of higher and higher degree, but Niels Henrik Abel (1802–1829) proved in

† The first use of the phrase in Europe was nothing to do with mathematics, but rather the
appellation ‘algebristas’ for Spanish barbers, who also set (‘reunited’) broken bones as a sideline
to their main business.
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1.4 Boole’s algebra of logic 7

1824 that there is no general way of solving polynomial equations of degree 5
and above using the ‘radical’ expressions that had worked for lower degrees.
Yet at the same time the scope of algebra expanded and it became general-
ized. Traditionally, variables had stood for real numbers, usually unknown
numbers to be determined. However, it soon became standard practice to
apply all the usual rules of algebraic manipulation to the ‘imaginary’ quan-
tity i assuming the formal property i2 = −1. Though this procedure went
for a long time without any rigorous justification, it was effective.

Algebraic methods were even applied to objects that were not numbers
in the usual sense, such as matrices and Hamilton’s ‘quaternions’, even at
the cost of abandoning the usual ‘commutative law’ of multiplication xy =
yx. Gradually, it was understood that the underlying interpretation of the
symbols could be ignored, provided it was established once and for all that
the rules of manipulation used are all valid under that interpretation. The
state of affairs was described clear-sightedly by George Boole (1815–1864).

They who are acquainted with the present state of the theory of Symbolic Algebra,
are aware, that the validity of the processes of analysis does not depend upon
the interpretation of the symbols which are employed, but solely on their laws of
combination. Every system of interpretation which does not affect the truth of the
relations supposed, is equally admissible, and it is true that the same process may,
under one scheme of interpretation, represent the solution of a question on the
properties of numbers, under another, that of a geometrical problem, and under a
third, that of a problem of dynamics or optics. (Boole 1847)

Boole went on to observe that nevertheless, by historical or cultural acci-
dent, all algebra at the time involved objects that were in some sense quanti-
tative. He introduced instead an algebra whose objects were to be interpreted
as ‘truth-values’ of true or false, and where variables represent propositions.†

By a proposition, we mean an assertion that makes a declaration of fact and
so may meaningfully be considered either true or false. For example, ‘1 < 2’,
‘all men are mortal’, ‘the moon is made of cheese’ and ‘there are infinitely
many prime numbers p such that p + 2 is also prime’ are all propositions,
and according to our present state of knowledge, the first two are true, the
third false and the truth-value of the fourth is unknown (this is the ‘twin
primes conjecture’, a famous open problem in mathematics).

We are familiar with applying to numbers various arithmetic operations
like unary ‘minus’ (negation) and binary ‘times’ (multiplication) and ‘plus’
(addition). In an exactly analogous way, we can combine truth-values using

† Actually Boole gave two different but related interpretations: an ‘algebra of classes’ and an
‘algebra of propositions’; we’ll focus on the latter.
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8 Introduction

so-called logical connectives, such as unary ‘not’ (logical negation or com-
plement) and binary ‘and’ (conjunction) and ‘or’ (disjunction).† And we
can use letters to stand for arbitrary propositions instead of numbers when
we write down expressions. Boole emphasized the connection with ordinary
arithmetic in the precise formulation of his system and in the use of the
familiar algebraic notation for many logical constants and connectives:

0 false
1 true
pq p and q

p + q p or q

On this interpretation, many of the familiar algebraic laws still hold. For
example, ‘p and q’ always has the same truth-value as ‘q and p’, so we can
assume the commutative law pq = qp. Similarly, since 0 is false, ‘0 and p’ is
false whatever p may be, i.e. 0p = 0. But the Boolean algebra of propositions
satisfies additional laws that have no counterpart in arithmetic, notably the
law p2 = p, where p2 abbreviates pp.

In everyday English, the word ‘or’ is ambiguous. The complex proposition
‘p or q’ may be interpreted either inclusively (p or q or both) or exclusively
(p or q but not both).‡ In everyday usage it is often implicit that the two
cases are mutually exclusive (e.g. ‘I’ll do it tomorrow or the day after’).
Boole’s original system restricted the algebra so that p + q only made sense
if pq = 0, rather as in ordinary algebra x/y only makes sense if y �= 0.
However, following Boole’s successor William Stanley Jevons (1835–1882),
it became customary to allow use of ‘or’ without restriction, and interpret it
in the inclusive sense. We will always understand ‘or’ in this now-standard
sense, ‘p or q’ meaning ‘p or q or both’.

Mechanization

Even before Boole, machines for logical deduction had been developed,
notably the ‘Stanhope demonstrator’ invented by Charles, third Earl of Stan-
hope (1753–1816). Inspired by this, Jevons (1870) subsequently designed and
built his ‘logic machine’, a piano-like device that could perform certain cal-
culations in Boole’s algebra of classes. However, the limits of mechanical

† Arguably disjunction is something of a misnomer, since the two truth-values need not be
disjoint, so some like Quine (1950) prefer alternation. And the word ‘connective’ is a misnomer
in the case of unary operations like ‘not’, since it does not connect two propositions, but merely
negates a single one. However, both usages are well-established.

‡ Latin, on the other hand, has separate phrases ‘p vel q’ and ‘aut p aut q’ for the inclusive and
exclusive readings, respectively.
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1.5 Syntax and semantics 9

engineering and the slow development of logic itself meant that the mecha-
nization of reasoning really started to develop somewhat later, at the start
of the modern computer age. We will cover more of the history later in the
book in parallel with technical developments. Jevons’s original machine can
be seen in the Oxford Museum for the History of Science.†

Logical form

In Section 1.1 we talked about arguments ‘having the same form’, but did
not define this precisely. Indeed, it’s hard to do so for arguments expressed
in English and other natural languages, which often fail to make the logical
structure of sentences apparent: superficial similarities can disguise funda-
mental structural differences, and vice versa. For example, the English word
‘is’ can mean ‘has the property of being’ (‘4 is even’), or it can mean ‘is the
same as’ (‘2 + 2 is 4’). This example and others like it have often generated
philosophical confusion.

Once we have a precise symbolism for logical concepts (such as Boole’s
algebra of logic) we can simply say that two arguments have the same form if
they are both instances of the same formal expression, consistently replacing
variables by other propositions. And we can use the formal language to make
a mathematically precise definition of logically valid arguments. This is not
to imply that the definition of logical form and of purely logical argument is
a philosophically trivial question; quite the contrary. But we are content not
to solve this problem but to finesse it by adopting a precise mathematical
definition, rather as Hertz (1894) evaded the question of what ‘force’ means
in mechanics. After enough concrete experience we will briefly consider (Sec-
tion 7.8) how our demarcation of the logical arguments corresponds to some
traditional philosophical distinctions.

1.5 Syntax and semantics

An unusual feature of logic is the careful separation of symbolic expressions
and what they stand for. This point bears emphasizing, because in every-
day mathematics we often pass unconsciously to the mathematical objects
denoted by the symbols. For example when we read and write ‘12’ we think
of it as a number, a member of the set N, not as a sequence of two numeral
symbols used to represent that number. However, when we want to make
precise our formal manipulations, whether these be adding decimal numbers
† See www.mhs.ox.ac.uk/database/index.htm?fname=brief&invno=18230 for some small pic-

tures.
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10 Introduction

digit-by-digit or using algebraic laws to rearrange symbolic expressions, we
need to maintain the distinction. After all, when deriving equations like
x + y = y + x, the whole point is that the mathematical objects denoted
are the same; we cannot directly talk about such manipulations if we only
consider the underlying meaning.

Typically then, we are concerned with (i) some particular set of allow-
able formal expressions, and (ii) their corresponding meanings. The two are
sharply distinguished, but are connected by an interpretation, which maps
expressions to their meanings:

Expression Meaning�
Interpretation

The distinction between formal expressions and their meanings is also
important in linguistics, and we’ll take over some of the jargon from that
subject. Two traditional subfields of linguistics are syntax, which is con-
cerned with the grammatical formation of sentences, and semantics, which
is concerned with their meanings. Similarly in logic we often refer to methods
as ‘syntactic’ if ‘like algebraic manipulations’ they are considered in isolation
from meanings, and ‘semantic’ or ‘semantical’ if meanings play an impor-
tant role. The words ‘syntax’ and ‘semantics’ are also used in linguistics with
more concrete meanings, and these too are adopted in logic.

• The syntax of a language is a system of grammar laying out rules about
how to produce or recognize grammatical phrases and sentences. For
example, we might consider ‘I went to the shop’ grammatical English
but not ‘I shop to the went’ because the noun and verb are swapped. In
logical systems too, we will often have rules telling us how to generate or
recognize well-formed expressions, perhaps for example allowing ‘x + 1’
but not ‘+1×’.

• The semantics of a particular word, symbol, sign or phrase is simply
its meaning. More broadly, the semantics of a language is a systematic
way of ascribing such meanings to all the (grammatical) expressions in
the language. Translated into linguistic jargon, choosing an interpretation
amounts exactly to giving a semantics to the language.
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