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GAMES AND SCALES

INTRODUCTION TO PART I

JOHN R. STEEL

The construction and use of Suslin representations for sets of reals lies at
the heart of descriptive set theory. Indeed, virtually every paper in descriptive
set theory in the Cabal Seminar volumes deals with such representations
in one way or another. Most of the papers in the section to follow focus
on the construction of optimally definable Suslin representations via game-
theoretic methods. In this introduction, we shall attempt to put those papers
in a broader historical and mathematical context. We shall also give a short
synopsis of the papers themselves, and describe some of the work done later
to which they are related.

§1. Some definitions and history. A tree on a setX is a subset ofX<� closed
under initial segments. If T is a tree on X × Y , then we regard T as a set of
pairs (s, t) of sequences with dom(s) = dom(t). If T is a tree, we use [T ] for
the set of infinite branches of T , and if T is on X × Y , we write

p[T ] = {x ∈ �
X : ∃y ∈ �

Y∀n < �((x � n, y � n) ∈ T )}.

We call p[T ] the projection of T , and say that T is a Suslin representation of
p[T ], or that p[T ] is Y -Suslin via T . For s ∈ X<� , let Ts = {u : (s, u) ∈ T},
and put Tx =

⋃
n
Tx�n. Then x ∈ p[T ] iff [Tx] �= ∅ iff Tx is illfounded.

Any set A ⊆ �
X is trivially A-Suslin. For the most part, useful Suslin

representations come from trees on some X × Y such that Y is wellordered.
Assuming (as we do) the Axiom of Choice (AC), this is no restriction on Y ,
but we can parlay it into an important and useful restriction by requiring in
addition that T be definable in some way or other. A variant of this approach
is to require that T belong to a model of AD. If T is definable, and X and
Y are definably wellordered, and p[T ] is nonempty, then the leftmost branch
(x,f) of T gives us a definable element x of p[T ]. (Here “leftmost” can be
determined by the lexicographic order on X × Y .)
The simplest nontrivialX to consider are the countable ones. This is by far
the most well-studied case in the Cabal volumes. In this case, one may regard
p[T ] as a subset of the Baire space ��, that is, as a set of “logician’s reals”.
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4 JOHN R. STEEL

Thus if A is a nonempty set of reals, κ is an ordinal, and A is κ-Suslin via a
definable tree, then A has a definable element.
Suslin representations were first discovered in 1917 by Suslin [Sus17], who
isolated the class of �-Suslin sets of reals, showed that it properly includes the
Borel sets, and showed that sets in this class have various regularity properties.
(For example, they are all Baire andLebesguemeasurable, and have the perfect
set property.) Suslin also founda beautiful characterization of theBorel sets of
reals as those which are both �-Suslin and have �-Suslin complements. (The
�-Suslin sets of reals are precisely the Σ˜

1
1 sets of reals, almost by definition.)

Definable Suslin representations yield definable elements, and in the “bold-
face” setting of classical descriptive set theory, this comes out as a uniformiza-
tion result. Herewe say that a functionfuniformizes a relationR iff dom(f) =
{x : ∃yR(x, y)}, and ∀x ∈ dom(f)R(x,f(x)). If R is a Σ˜

1
1 relation, say

R = p[T ] where T is a tree on (�×�)×�, then we can use leftmost branches
to uniformizeR: let f(x) = y, where (y, h) is the leftmost branch of Tx . One
can calculate that for any open set U , f−1(U ) is in the �-algebra generated
by the Σ˜

1
1 sets, and is therefore Lebesgue and Baire measurable. This classical

uniformization result was proved by Jankov and von Neumann around 1940
[vN49]. The “lightface”, effective refinement of a uniformization theorem is
a basis theorem, where we say a pointclass Λ is a basis for a pointclass Γ just
in case every nonempty set of reals in Γ has a member which is in Λ. Kleene
[Kle55] proved the lightface version of the Jankov-von Neumann result. He
observed that if A ⊆ �� is lightface Σ11, thenA = p[T ] for some recursive tree
T , and that the leftmost branch of T is recursive in the set W of all Gödel
numbers of wellfounded trees on �. Thus {x : x ≤T W } is a basis for Σ11.
In 1935–38, toward the end of the classical period, Novikoff and Kondô
constructed definable, �1-Suslin representations for arbitrary Σ˜

1
2 sets, and

used them to show every Σ˜
1
2 relation has a Σ˜

1
2 uniformization. (See [LN35,

Kon38].) The effective refinement of this landmark theorem is due toAddison,
who showed that the �1-Suslin reprentations of nonempty lightface Σ12 sets
constructed by Novikoff and Kondô yield, via leftmost branches, lightface ∆12
elements for such sets.
Logicians often meet Suslin representations through the Shoenfield Abso-
luteness theorem. Shoenfield [Sch61] showed that a certain tree T on � × �1
which comes from the Novikoff-Kondô construction is in L. Because well-
foundedness is absolute to transitive models of ZF, he was able to conclude
that the leftmost branch of T is in L, and thus, that every nonempty Σ12 set
of reals has an element in L. From this it follows easily that L is Σ12 correct.
This method of using definable Suslin representations to obtain correctness
and absoluteness results for models of set theory is very important.
In addition to definability, there is a second very useful property a Suslin
representation might have. We call a tree T on X × Y homogeneous just in
case there is a family 〈�s : s ∈ X<�〉 such that
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INTRODUCTION TO PART I 5

(1) for all s , �s is a countably complete 2-valued measure (i.e. ultrafilter)
on {u : (s, u) ∈ T},

(2) if s ⊆ t, and �s (A) = 1, then �t({u : u � dom(s) ∈ A}) = 1, and
(3) for any x ∈ p[T ] and any 〈Ai : i < �〉 such that �x�i(Ai ) = 1 for all i ,
there is a f ∈ Y� such that f � i ∈ Ai for all i .

We say T is κ-homogeneous if the measures �s can be taken to be κ-additive.
If T is κ-homogeneous, then we also call p[T ] a κ-homogeneously Suslin set.
We write Homκ for the pointclass of κ-homogeneous sets, and Hom∞ for the
pointclass

⋂
κ
Homκ.

The concept of homogeneity is implicit in Martin’s 1968 proof [Mar70A]
of Π11 determinacy, and was first explicitly isolated by Martin and Kechris.
Martin showed that if κ is a measurable cardinal, then every Π11 set of reals
is κ homogeneous, via a Shoenfield tree on � × κ. He also showed that
every homogeneously Suslin set of reals is determined. Martin’s proof became
the template for all later proofs of definable determinacy from large cardinal
hypotheses. Indeed, the standard characterization of descriptive set theory,
as the study of the good behavior of definable sets of reals, would perhaps be
more accurate if one replaced “definable” by “∞-homogeneously Suslin”.
There are two natural weakenings of homogeneity. First, a tree T on
X × (�×Y ) is κ-weakly homogeneous just in case it is κ- homogeneous when
viewed as a tree on (X × �) × Y . Thus the weakly homogeneous subsets
of �X are just the existential real quantifications of a homogeneous subsets
of �X × �

�, and Martin’s [Mar70A] shows in effect that whenever κ is
measurable, all Σ˜

1
2 sets of reals are κ-weakly homogeneous. Second, a pair of

trees S and T , on X ×Y and X ×Z respectively, are κ-absolute complements
iff

V[G ] |= p[S] = �
X \ p[T ]

whenever G is V-generic for a poset of cardinality < κ. The fundamental
Martin-Solovay construction, also from 1968 (see [MS69]), shows that every
κ-weakly homogeneous tree has a κ-absolute complement. The projection of
a κ-absolutely complemented tree is said to be κ-universally Baire. This con-
cept was first explicitly isolated and studied by Feng, Magidor, andWoodin in
[FMW92]. Any universally Baire set has the Baire property and is Lebesgue
measurable, but one cannot show in ZFC alone that such sets must be de-
termined. (See [FMW92].) On the other hand, if there are arbitrarily large
Woodin cardinals, then for any set of reals A, A is κ-homogeneous for all κ
iff A is κ-weakly homogeneous for all κ iff A is κ-universally Baire for all κ.
(This is work of Martin, Solovay, Steel, and Woodin; see [Lar04, Theorem
3.3.13] for one exposition, and [SteA] for another.)
Althoughour discussion of homogeneity has focussed on its use in situations
where the Axiom of Choice and the existence of large cardinals is assumed, the
concept is also quite important in contexts in which full AD is assumed. AD
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6 JOHN R. STEEL

gives us not just measures, but homogeneitymeasures; indeed, assumingAD, a
set of reals is homogeneously Suslin iff both it and its complement areΘ-Suslin.
(This result of Martin from the 80’s can be found in [MS89].) The analysis of
homogeneity measures is a central theme in the work of Kunen, Martin, and
Jackson [Sol78A, Jac88, Jac99] which located the projective ordinals among
the alephs. The reader should see Jackson’s surveys [Jac07A] and [Jac07B] for
more on homogeneity and the projective ordinals in the AD context.

§2. Construction methods. One could group the methods for producing
useful Suslin representations as follows:

(1) the Martin-Solovay construction,
(2) trees to produce an elementary submodel, and
(3) scale constructions using comparison games.

We discuss these methods briefly:

2.1. The Martin-Solovay construction. The Martin-Solovay construction
makes use of homogeneity. If T on X × Y is is κ- weakly homogeneous via
the system of measures ��, and |X | < κ, then the construction produces a
tree ms(T, ��) which is a κ-absolute complement for T . The construction of
ms(T, ��) is effective, and its basic properties can be proved to hold in ZF+DC.
Martin and Solovay [MS69] applied it with T the Shoenfield tree for Σ12 and ��
its weak homogeneity measures implicit in Martin’s [Mar70A]. They showed
thereby that if κ is measurable, then for any Σ13 formula ϕ, there is a tree U
such that p[U ] = {x ∈ �� : ϕ(x)} is true in every generic extension of V by
a poset of size < κ.
The Martin-Solovay tree ms(T, ��) is definable from T and ��. Now suppose
T be on � ×Y . There is a simple variant of ms(T, ��) which is definable from
T and the restrictions of the measures in �� to

⋃
{L[T, x] : x ∈ �

�}. Let us
call this variant ms∗(T, ��). If T is the Shoenfield tree, so thatT ∈ L, then one
can define these restricted weak homogeneity measures, and hence ms∗(T, ��)
itself, from the sharp function on the reals. Martin and Solovay showed this
way that ∆14 is a basis for Π

1
2, and Mansfield later improved their result by

showing the class of Π13 singletons is a basis for Π
1
2. (See [Man71].) These

results are not optimal, however. We do not know whether one can get the
optimal basis and uniformization results in the projective hierarchy using the
Martin-Solovay construction.
Under appropriate large cardinal hypotheses, the Martin-Solovay tree is
itself homogeneous. (See [MS07] for a precise statement.) Thus under the
appropriate large cardinal hypotheses, one can show via the Martin-Solovay
construction that the pointclass Hom∞ is closed under complements and real
quantification.

2.2. The tree to produce an elementary submodel. If a set A of reals admits
a definition with certain condensation and generic absoluteness properties,
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INTRODUCTION TO PART I 7

then A is universally Baire. More precisely, let κ be a cardinal, and ϕ(v0, v1)
a formula in the language of set theory, and t any set. Let � > κ, X ≺ V� be
countable, and letM be the transitive collapse of X , with κ̄ and t̄ the images
of κ and t under collapse. We say X is generically 〈ϕ,A〉-correct iff whenever
g isM -generic for a poset of size < κ̄ inM , then for all reals y ∈M [g],

y ∈ A⇔M [g] |= ϕ[y, t̄].

If the set of generically 〈ϕ,A〉 correct X is club in ℘�1 (V�), then A admits a
κ-absolutely complemented Suslin representation T . The construction of T
is relatively straightforward: if (y,f) ∈ [T ], thenf will have built anX in our
club of generically correct hulls, together with a proof thatM [g] |= ϕ[y, t̄],
for some g generic over the collapse M of X . (We are not certain as to the
origin of this construction. Woodin made early use of it. See [FMW92] or
[SteA].)
One can use either stationary tower forcing (cf. theTree Production Lemma,
[Lar04] or [SteA]) or iterations to make reals generic [Ste07B, § 7] to obtain,
for various interesting 〈ϕ,A〉, a club of generically 〈ϕ,A〉-correct X .
If one replaces V� by an appropriate direct limit of mice, then the tree to
produce an elementary submodel becomes definable, at a level corresponding
to the definability of the iteration strategies for the mice in question. See
the concluding paragraphs of [Ste95A], and [Ste07B, § 8]. One can use this
to get optimal basis and uniformization results for various pointclasses, for
example (Σ21)

L(R). It is difficult to obtain the optimal basis and uniformization
results for Π13 by these methods, but, building on work of Hugh Woodin, Itay
Neeman has succeeded in doing so. (This work is unpublished.)

2.3. Propagation of scales using comparison games. The simplest method
for obtaining optimally definable Suslin representations makes direct use of
the determinacy of certain infinite games. It was discovered in 1971 by Mos-
chovakis, who used it to extend theNovikoff-Kondô-Addison theorems to the
higher levels of the projective hierarchy. (The original paper is [Mos71A]; see
also [KM78B] and [Mos80, Chapter 6].) As part of this work, Moschovakis
introduced the basic notion of a scale, which we now describe.
Let T be a tree on � × 	, and A = p[T ]. One can get a “small” subtree
of T which still projects to A by considering only ordinals < 	 which appear
in some leftmost branch. The scale of T does this, then records the resulting
subtree as a sequence of norms, i.e. ordinal-valued functions, on A. More
precisely, for x ∈ A and n < �, put

ϕn(x) = |〈lx(0), ..., lx(n)〉|lex,

where for u ∈ 	n+1, |u|lex is the ordinal rank of u in the lexicographic order on
	
n. Then

�ϕ = 〈ϕn : n < �〉

is the scale of T . It has the properties:
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8 JOHN R. STEEL

(a) Suppose that xi ∈ A for all i < �, and xi → x as i → ∞, and for all n,
ϕn(xi ) is eventually constant as n → ∞, then
(i) (limit property) x ∈ A, and
(ii) (lower semi-continuity) for all n, ϕn(x) ≤ the eventual value of
ϕn(xi) as i → ∞.

(b) (refinement property) if x, y ∈ A and ϕn(x) < ϕn(y), then ϕm(x) <
ϕm(y) for all m > n.

A sequence of norms on A with property (a) is called a scale on A. Any
scale on A can be easily transformed into a scale on A with the refinement
property. If �ϕ is a scale on A, then we define the tree of �ϕ to be

T�ϕ = {(〈x(0), ..., x(n − 1)〉, 〈ϕ0(x), ..., ϕn−1(x)〉) : n < � and x ∈ A}.

It is not hard to see that p[T�ϕ ] = A. If �ϕ has the refinement property,
and �
 is the scale of T�ϕ , then �
 is equivalent to �ϕ, in the sense that for
all n, x and y, 
n(x) ≤ 
n(y) iff ϕn(x) ≤ ϕn(y). The reader should see
[KM78B, 6B] and [Jac07B, § 2] for more on the relationship between scales
and Suslin representations.
There are least two benefits to considering the scale of a tree: first, it
becomes easier to state and prove optimal definability results, and second,
the construction of Suslin representations using comparison games becomes
clearer. Concerning definability, we have

Definition 2.1. Let Γ be a pointclass, and �ϕ a scale on A, where A ∈ Γ;
then we call �ϕ a Γ-scale on A just in case the relations

R(n, x, y)⇔ x ∈ A ∧ (y �∈ A ∨ ϕn(x) ≤ ϕn(y)),

and

S(n, x, y)⇔ x ∈ A ∧ (y �∈ A ∨ ϕn(x) < ϕ(y))

are each in Γ. We say Γ has the scale property just in case every set in Γ admits
a Γ-scale, and write Scale(Γ) in this case.

Moschovakis showed that if Γ is a pointclass which is closed under universal
real quantification, has other mild closure properties, and has the scale prop-
erty, then every Γ relation has a Γ uniformization, and the Γ singletons are a
basis for Γ. [KM78B, 3A-1]. He also showed that assuming ∆˜

1
2n determinacy,

both Π12n+1 and Σ
1
2n+2 have the scale property [KM78B, 3B, 3C]. From this,

one gets the natural generalization of Novikoff-Kondô-Addison to the higher
levels of the projective hierachy.
Moschovakis’ construction of scales goes by propagating them from a set
A to a set B obtained from A via certain logical operations. One starts with
the fact that Σ01 has the scale property, and uses these propagation theorems
to obtain definable scales on more complicated sets. The propagation works
at the level of the individual norms in the scales.
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INTRODUCTION TO PART I 9

For example, if ϕ is a norm of A, where A ⊆ X × �
Y , and

B(y)⇔ ∃xA(x, y),

then we obtain the “inf” norm on B by setting


(y) = inf{ϕ(x, y) : A(x, y)}.

If either X is an ordinal, orX = �
�, then inf norms can be used to transform

a scale onA into a scale onB. (See [KM78B, 3B-2].) This transformation has
a simple meaning in terms of the tree of the scale; if X = �

�, it corresponds
to regarding a tree on (Y × �)× κ as a tree on Y × (� × κ).
Definable scales do not propagate under negation or universal quantifica-
tion over ordinals. (Otherwise, it would be possible to assign to each countable
ordinal α a scale on the set of wellorders of � of order type α, in a definable
way. This would then yield a definable function picking a codes for the count-
able ordinals.) Moschovakis’ main advance in [Mos71A] was to show that
universal quantification over the reals propagates definable scales. Here it is
definitely important to work with scales, rather than their associated trees. As
before, the propagation takes place at the level of individual norms. Let ϕ be
a norm on A, where A ⊆ R × Y , and let

B(y)⇔ ∀xA(x, y).

To each y ∈ B, we associate fy : R → OR, where

fy(x) = ϕ(x, y).

Our norm onB records an ordinal measure of the growth rate offy . Namely,
given f, g : R → OR, we let G(f, g) be the game on �: I plays out x0,
II plays out x1, the players alternating moves as usual. Player II wins iff
f(x0) ≤ g(x1). (Thus a winning strategy for II witnesses that g grows at least
as fast as f, in an effective way.) Now put

f ≤∗
g ⇔ II has a winning strategy in G(f, g).

Granted full AD, one can show ≤∗ is a prewellorder of all the ordinal-valued
functions on R, and granted only determinacy for sets simply definable from
ϕ, one can show that ≤∗ prewellorders the fy for y ∈ B. Our norm on B is
then given by


(y) = ordinal rank of fy in ≤
∗� {fz : B(z)}.

(See [KM78B, 2C-1].) The norm 
 is generally called the “fake sup” norm
obtained fromϕ; the ordinal
(y) measures how difficult it is to verifyA(x, y)
at arbitrary x.
The fake-sup construction was first used in [AM68], to propagate the pre-
wellordering property, which involves only one norm. Granted enough deter-
minacy, the construction can be used to transform a scale onA into a scale on
B, where B(y) ⇔ ∀xA(x, y). The key additional idea is to record, for each
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10 JOHN R. STEEL

basic neighborhoodNs , the ordinal rank offy � Ns in≤∗� {fz � Ns : B(z)}.
See [KM78B, 3C-1].
Using more sophisticated comparison games, one can combine the tech-
niques for propagating scales under universal and existential real quantifica-
tion, aswell as existential ordinal quantification. This leads to the propagation
of scales under various game quantifiers. We shall discuss these results in more
detail in the next section.
Although the fake-sup method of propagating scales was invented in order
to obtain optimally definable scales, one can show that under AD, the tree of
the scale it produces is very often homogeneous. (The tree of any scale is the
surjective image of R, so it is too small to be homogeneous in V.) See [MS07],
where it is also shown that the tree very often has the “generic codes” property
of [KW07].

§3. Individual papers. We pass to an extended table of contents for the
papers in the block to follow, togetherwith pointers to some related results and
literature. We also include a number of proof sketches. Some of these sketches
will only make sense to readers with significant background knowledge. We
have included references to fuller explanations in the literature when possible.

Notes on the theory of scales [KM78B].

This is a survey paper, written in 1971. It is still an excellent starting point
for anyone seeking basic information regarding the construction and use of
scales under determinacy hypotheses. It is truly remarkable how much of
the descriptive set theory that is founded on large cardinals and determinacy
emerged in the early years of the subject.
The paper begins in §2 – §4with the inf and fake-sup constructions,and their
corollaries regarding the scale property and uniformization in the projective
hierarchy.

Theorem 3.1 (Moschovakis 1970). Assume all ∆˜
1
2n games are determined;

then

(1) Π12n+1 and Σ
1
2n+2 have the scale property, and hence

(2) every Π12n+1 (respectively Σ
1
2n+2) relation on R can be uniformized by a

Π12n+1 (respectively Σ
1
2n+2) function.

In §6, the projective ordinals

�˜
1
n
:= sup{α : α is the order type of a ∆˜

1
n
prewellorder of R}

are introduced. One can show that, assuming PD, any Π12n+1-norm on a
complete Π12n+1 set has length �˜

1
2n+1; see [Mos80, 4C.14]. From the scale

property forΠ12n+1 one then gets that allΠ
1
2n+1 sets are�˜

1
2n+1-Suslin, and thence

that all Σ12n+2 sets are �˜
1
2n+1-Suslin. (For n = 0, this reduces to the classical
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INTRODUCTION TO PART I 11

Novikoff-Kondô result that all Σ12 sets are�1-Suslin.) The size of the projective
ordinals, both in inner models of AD, and in the full universe V, is therefore
a very important topic. It is a classical result that �˜

1
1 = �1, while the size of

the larger projective ordinals has been the subject of much later work, some
of which will be collected in a block of papers in a later volume in this series.
§7 proves the Kunen-Martin theorem:

Theorem 3.2 (Kunen, Martin). Every κ-Suslin wellfounded relation on R

has rank < κ+.

This basic result has important corollaries concerning the sizes of the pro-
jective ordinals. For example, because all Σ12n+2 sets are �˜

1
2n+1-Suslin, we have

that �˜
1
2n+2 ≤ (�˜

1
2n+1)

+, and in particular, �˜
1
2 ≤ �2.

§8 investigates the way in which Suslin representations yield∞-Borel rep-
resentations. It is shown that κ-Suslin sets are κ++-Borel (i.e. can be built
up from open sets using complementation and wellordered unions of length
< κ

++). Of course, if CH holds, then every set of reals is a union of �1 sin-
gletons; the true content of the result of §8 lies in the fact that the κ++-Borel
representation is definable from the κ-Suslin representation. §8 also shows
that, assuming PD, every ∆˜

1
2n+1 set is �˜

1
2n+1-Borel. If n = 0, this is just Suslin’s

original theorem. In order to obtain a converse when n > 0, wemust impose a
definability restriction on our �˜

1
2n+1-Borel representation, since again, it could

be that every set of reals is �1 + 1-Borel. One way to do that is to assume
full AD, and Martin showed that indeed, assuming AD, every ∆˜

1
2n+1 set is

�˜
1
2n+1-Borel. So we have

Theorem 3.3 (Martin, Moschovakis). Assume AD; then the ∆˜
1
2n+1 sets of

reals are precisely the �˜
1
2n+1-Borel sets.

See [Mos80, 7D.9]. This fully generalizes Suslin’s 1917 theorem to the
higher levels of the projective hierarchy.
§5 and §9 introduce inner models, obtained from Suslin representations,
which have certain degrees of correctness. In §5, it is shown that for n ≥ 2,
there is a unique, minimal Σ1

n
-correct inner modelM∗

n
containing all the ordi-

nals; the model is obtained by closing under constructibility and an optimally
definable Skolem function for Σ1

n
. (Kechris and Moschovakis call this model

Mn—not to be confused with Mn; see below.) §9 considers the model L[T ],
where T is the tree of a Π12n+1 scale on a complete Π

1
2n+1 set. These models

have proved more important in later work than the M∗
n
. It is shown that if

n = 0, then L[T ] = L; in particular, L[T ] is independent of the Π12n+1 scale
and complete set chosen. Moschovakis conjectured that L[T ] is independent
of these choices if n > 0 as well, and more vaguely, that it is a “correct higher
level analog of L”.
Becker’s paper [Bec78] contains an excellent summary of what was known
in 1977 about the models of §5 and §9. The independence conjecture, which
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