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The λ-calculus

1A Introduction

What is usually called λ-calculus is a collection of several formal systems,
based on a notation invented by Alonzo Church in the 1930s. They are
designed to describe the most basic ways that operators or functions can
be combined to form other operators.

In practice, each λ-system has a slightly different grammatical struc-
ture, depending on its intended use. Some have extra constant-symbols,
and most have built-in syntactic restrictions, for example type-restrict-
ions. But to begin with, it is best to avoid these complications; hence
the system presented in this chapter will be the ‘pure’ one, which is
syntactically the simplest.

To motivate the λ-notation, consider the everyday mathematical ex-
pression ‘x − y’. This can be thought of as defining either a function f

of x or a function g of y;

f(x) = x − y, g(y) = x − y,

or

f : x �→ x − y, g : y �→ x − y.

And there is a need for a notation that gives f and g different names
in some systematic way. In practice, mathematicians usually avoid this
need by various ‘ad-hoc’ special notations, but these can get very clumsy
when higher-order functions are involved (functions which act on other
functions).

Church’s notation is a systematic way of constructing, for each expres-
sion involving ‘x’, a notation for the corresponding function of x (and
similarly for ‘y’, etc.). Church introduced ‘λ’ as an auxiliary symbol and
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2 The λ-calculus

wrote

f = λx . x − y g = λy . x − y.

For example, consider the equations

f(0) = 0 − y, f(1) = 1 − y.

In the λ-notation these become

(λx . x − y)(0) = 0 − y, (λx . x − y)(1) = 1 − y.

These equations are clumsier than the originals, but do not be put off
by this; the λ-notation is principally intended for denoting higher-order
functions, not just functions of numbers, and for this it turns out to be
no worse than others.1 The main point is that this notation is system-
atic, and therefore more suitable for incorporation into a programming
language.

The λ-notation can be extended to functions of more than one vari-
able. For example, the expression ‘x − y’ determines two functions h

and k of two variables, defined by

h(x, y) = x − y, k(y, x) = x − y.

These can be denoted by

h = λxy . x − y, k = λyx . x − y.

However, we can avoid the need for a special notation for functions of
several variables by using functions whose values are not numbers but
other functions. For example, instead of the two-place function h above,
consider the one-place function h� defined by

h� = λx . (λy . x − y).

For each number a, we have

h�(a) = λy . a − y;

hence for each pair of numbers a, b,

(h�(a))(b) = (λy . a − y)(b)

= a − b

= h(a, b).

1 For example, one fairly common notation in mathematics is f = x �→ x− y, which
is essentially just the λ-notation in disguise, with ‘x �→’ instead of ‘λx’.
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1A Introduction 3

Thus h� can be viewed as ‘representing’ h. For this reason, we shall
largely ignore functions of more than one variable in this book.

From now on, ‘function’ will mean ‘function of one variable’ unless
explicitly stated otherwise. (The use of h� instead of h is usually called
currying.2)

Having looked at λ-notation in an informal context, let us now con-
struct a formal system of λ-calculus.

Definition 1.1 (λ-terms) Assume that there is given an infinite se-
quence of expressions v0 , v00 , v000 , . . . called variables, and a finite,
infinite or empty sequence of expressions called atomic constants, dif-
ferent from the variables. (When the sequence of atomic constants is
empty, the system will be called pure, otherwise applied.) The set of
expressions called λ-terms is defined inductively as follows:

(a) all variables and atomic constants are λ-terms (called atoms);
(b) if M and N are any λ-terms, then (MN) is a λ-term (called an

application);
(c) if M is any λ-term and x is any variable, then (λx.M) is a λ-term

(called an abstraction).

Example 1.2 (Some λ-terms)

(a) (λv0 .(v0v00)) is a λ-term.

If x, y, z are any distinct variables, the following are λ-terms:

(b) (λx.(xy)), (d) (x (λx.(λx.x))),

(c) ((λy.y)(λx.(xy))), (e) (λx.(yz)).

In (d), there are two occurrences of λx in one term; this is allowed by
Definition 1.1, though not encouraged in practice. Part (e) shows a term
of form (λx.M) such that x does not occur in M ; this is called a vacuous
abstraction, and such terms denote constant functions (functions whose
output is the same for all inputs).

By the way, the expression ‘λ’ by itself is not a term, though it may
occur in terms; similarly the expression ‘λx’ is not a term.

2 Named after Haskell Curry, one of the inventors of combinatory logic. Curry
always insisted that he got the idea of using h� from M. Schönfinkel’s [Sch24] (see
[CF58, pp. 8, 10]), but most workers seem to prefer to pronounce ‘currying’ rather
than ‘schönfinkeling’. The idea also appeared in 1893 in [Fre93, Vol. 1, Section 4].
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4 The λ-calculus

Notation 1.3 Capital letters will denote arbitrary λ-terms in this chap-
ter. Letters ‘x’, ‘y’, ‘z’, ‘u’, ‘v’, ‘w’ will denote variables throughout the
book, and distinct letters will denote distinct variables unless stated
otherwise.

Parentheses will be omitted in such a way that, for example, ‘MNPQ’
will denote the term (((MN)P )Q). (This convention is called associa-
tion to the left .) Other abbreviations will be

λx.PQ for (λx.(PQ)),
λx1x2 . . . xn .M for (λx1 .(λx2 .(. . . (λxn .M) . . .))).

Syntactic identity of terms will be denoted by ‘≡’; in other words

M ≡ N

will mean that M is exactly the same term as N . (The symbol ‘=’ will
be used in formal theories of equality, and for identity of objects that
are not terms, such as numbers.) It will be assumed of course that if
MN ≡ PQ then M ≡ P and N ≡ Q, and if λx.M ≡ λy.P then x ≡ y

and M ≡ P . It will also be assumed that variables are distinct from
constants, and applications are distinct from abstractions, etc. Such
assumptions are always made when languages are defined, and will be
left unstated in future.

The cases k = 0, n = 0 in statements like ‘P ≡ MN1 . . . Nk (k ≥ 0)’
or ‘T has form λx1 . . . xn .PQ (n ≥ 0)’ will mean ‘P ≡ M ’ or ‘T has
form PQ’.

‘λ’ will often be used carelessly to mean ‘λ-calculus in general’.
‘Iff ’ will be used for ‘if and only if’.

Exercise 1.4 ∗ Insert the full number of parentheses and λ’s into the
following abbreviated λ-terms:

(a) xyz(yx), (d) (λu.vuu)zy,
(b) λx.uxy, (e) ux(yz)(λv.vy),
(c) λu.u(λx.y), (f) (λxyz.xz(yz))uvw.

Informal interpretation 1.5 Not all systems based on λ-calculus use
all the terms allowed by Definition 1.1, and in most systems, some terms
are left uninterpreted, as we shall see later. But the interpretations of
those λ-terms which are interpreted may be given as follows, roughly
speaking.
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1B Terms and substitution 5

In general, if M has been interpreted as a function or operator, then
(MN) is interpreted as the result of applying M to argument N , pro-
vided this result exists.3

A term (λx.M) represents the operator or function whose value at an
argument N is calculated by substituting N for x in M .

For example, λx.x(xy) represents the operation of applying a function
twice to an object denoted by y; and the equation

(λx.x(xy))N = N(Ny)

holds for all terms N , in the sense that both sides have the same inter-
pretation.

For a second example, λx.y represents the constant function that
takes the value y for all arguments, and the equation

(λx.y)N = y

holds in the same sense as before.
This is enough on interpretation for the moment; but more will be

said in Chapter 3, Discussion 3.27.

1B Term-structure and substitution

The main topic of the chapter will be a formal procedure for calculating
with terms, that will closely follow their informal meaning. But before
defining it, we shall need to know how to substitute terms for variables,
and this is not entirely straightforward. The present section covers the
technicalities involved. The details are rather boring, and the reader
who is just interested in main themes should read only up to Definition
1.12 and then go to the next section.

By the way, in Chapter 2 a simpler system called combinatory logic
will be described, which will avoid most of the boring technicalities; but
for this gain there will be a price to pay.

Definition 1.6 The length of a term M (called lgh(M)) is the total
number of occurrences of atoms in M . In more detail, define

3 The more usual notation for function-application is M (N ), but historically (MN )
has become standard in λ-calculus. This book uses the (MN ) notation for formal
terms (following Definition 1.1(b)), but reverts to the common notation, e.g. f (a),
in informal discussions of functions of numbers, etc.
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6 The λ-calculus

(a) lgh(a) = 1 for atoms a;
(b) lgh(MN) = lgh(M) + lgh(N);
(c) lgh(λx.M) = 1 + lgh(M).

The phrase ‘induction on M ’ will mean ‘induction on lgh(M)’.

For example, if M ≡ x(λy.yux) then lgh(M) = 5.

Definition 1.7 For λ-terms P and Q, the relation P occurs in Q (or P

is a subterm of Q, or Q contains P ) is defined by induction on Q, thus:

(a) P occurs in P ;
(b) if P occurs in M or in N , then P occurs in (MN);
(c) if P occurs in M or P ≡ x, then P occurs in (λx.M).

The meaning of ‘an occurrence of P in Q’ is assumed to be intu-
itively clear. For example, in the term ((xy)(λx.(xy))) there are two
occurrences of (xy) and three occurrences of x.4

Exercise 1.8 ∗ (Hint: in each part below, first write the given terms
in full, showing all parentheses and λ’s.)

(a) Mark all the occurrences of xy in the term λxy.xy.
(b) Mark all the occurrences of uv in x(uv)(λu.v(uv))uv.
(c) Does λu.u occur in λu.uv ?

Definition 1.9 (Scope) For a particular occurrence of λx.M in a term
P , the occurrence of M is called the scope of the occurrence of λx on
the left.

Example 1.10 Let

P ≡ (λy.yx(λx.y(λy.z)x))vw.

The scope of the leftmost λy in P is yx(λx.y(λy.z)x), the scope of λx

is y(λy.z)x, and that of the rightmost λy is z.

Definition 1.11 (Free and bound variables) An occurrence of a
variable x in a term P is called

• bound if it is in the scope of a λx in P ,
4 The reader who wants more precision can define an occurrence of P in Q to be a

pair 〈P, p〉 where p is some indicator of the position at which P occurs in Q. There
are several definitions of suitable position indicators in the literature, for example
in [Ros73, p. 167] or [Hin97, pp. 140–141]. But it is best to avoid such details for
as long as possible.
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1B Terms and substitution 7

• bound and binding, iff it is the x in λx,
• free otherwise.

If x has at least one binding occurrence in P , we call x a bound variable
of P . If x has at least one free occurrence in P , we call x a free variable
of P . The set of all free variables of P is called

FV(P ).

A closed term is a term without any free variables.

Examples Consider the term xv(λyz.yv)w: this is really
((

(xv)(λy.(λz.(yv)))
)
w

)
,

and in it the x on the left is free, the leftmost v is free, the leftmost y

is both bound and binding, the only z is the same, the rightmost y is
bound but not binding, the rightmost v is free, and the only w is free.

In the term P in Example 1.10, all four y’s are bound, the leftmost
and rightmost y’s are also binding, the left-hand x is free, the central x

is bound and binding, the right-hand x is bound but not binding, and
z, v, w are free; hence

FV(P ) = {x, z, v, w}.

Note that x is both a free and a bound variable of P ; this is not normally
advisable in practice, but is allowed in order to keep the definition of
‘λ-term’ simple.

Definition 1.12 (Substitution) For any M , N , x, define [N/x]M to
be the result of substituting N for every free occurrence of x in M , and
changing bound variables to avoid clashes. The precise definition is by
induction on M , as follows (after [CF58, p. 94]).

(a) [N/x]x ≡ N ;

(b) [N/x] a ≡ a for all atoms a 	≡ x;

(c) [N/x](PQ) ≡
(
[N/x]P [N/x]Q

)
;

(d) [N/x](λx.P ) ≡ λx.P ;

(e) [N/x](λy.P ) ≡ λy.P if x 	∈ FV(P );

(f) [N/x](λy.P ) ≡ λy. [N/x]P if x ∈ FV(P ) and y 	∈ FV(N);

(g) [N/x](λy.P ) ≡ λz. [N/x][z/y]P if x ∈ FV(P ) and y ∈ FV(N).

(In 1.12(e)–(g), y 	≡ x; and in (g), z is chosen to be the first variable
	∈ FV(NP ).)
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8 The λ-calculus

Remark 1.13 The purpose of clause 1.12(g) is to prevent the intuitive
meaning of [N/x](λy.P ) from depending on the bound variable y. For
example, take three distinct variables w, x, y and look at

[w/x](λy.x).

The term λy.x represents the constant function whose value is always
x, so we should intuitively expect [w/x](λy.x) to represent the constant
function whose value is always w. And this is what we get; by 1.12(f)
and (a) we have

[w/x](λy.x) ≡ λy.w.

Now consider [w/x](λw.x). The term λw.x represents the constant
function whose value is x, just as λy.x did. So we should hope that
[w/x](λw.x) would represent the constant function whose value is always
w.

But if [w/x](λw.x) was evaluated by (f), our hope would fail; we
would have

[w/x](λw.x) ≡ λw.w,

which represents the identity function, not a constant function. Clause
(g) rescues our hope. By (g) with N ≡ y ≡ w, we have

[w/x](λw.x) ≡ λz. [w/x][z/w]x

≡ λz. [w/x]x by 1.12 (b)

≡ λz.w,

which represents the desired constant function.

Exercise 1.14 ∗ Evaluate the following substitutions:

(a) [(uv)/x] (λy.x(λw.vwx)),

(b) [(λy.xy)/x] (λy.x(λx.x)),

(c) [(λy.vy)/x] (y (λv.xv)),

(d) [(uv)/x] (λx.zy).

Lemma 1.15 For all terms M , N and variables x:

(a) [x/x]M ≡ M ;

(b) x 	∈ FV(M) =⇒ [N/x]M ≡ M ;

(c) x ∈ FV(M) =⇒ FV([N/x]M) = FV(N) ∪
(
FV(M) − {x}

)
;

(d) lgh([y/x]M) = lgh(M).
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1B Terms and substitution 9

Proof Easy, by checking the clauses of Definition 1.12.

Lemma 1.16 Let x, y, v be distinct (the usual notation convention),
and let no variable bound in M be free in vPQ. Then

(a) [P/v][v/x]M ≡ [P/x]M if v 	∈ FV(M);

(b) [x/v][v/x]M ≡ M if v 	∈ FV(M);

(c) [P/x][Q/y]M ≡ [([P/x]Q)/y][P/x]M if y 	∈ FV(P );

(d) [P/x][Q/y]M ≡ [Q/y][P/x]M if y 	∈ FV(P ), x 	∈ FV(Q);

(e) [P/x][Q/x]M ≡ [([P/x]Q)/x]M .

Proof The restriction on variables bound in M ensures that 1.12(g)
is never used in the substitutions. Parts (a), (c), (e) are proved by
straightforward but boring inductions on M . Part (b) follows from (a)
and 1.15(a), and (d) follows from (c) and 1.15(b).

Definition 1.17 (Change of bound variables, congruence) Let
a term P contain an occurrence of λx.M , and let y 	∈ FV(M). The act
of replacing this λx.M by

λy. [y/x]M

is called a change of bound variable or an α-conversion in P . Iff P can
be changed to Q by a finite (perhaps empty) series of changes of bound
variables, we shall say P is congruent to Q, or P α-converts to Q, or

P ≡α Q.

Example 1.18

λxy.x(xy) ≡ λx.(λy.x(xy))
≡α λx.(λv.x(xv))
≡α λu.(λv.u(uv))
≡ λuv.u(uv).

Definition 1.17 comes from [CF58, p. 91]. The name ‘α-converts’
comes from the same book, as do other Greek-letter names that will
be used later; some will look rather arbitrary but they have become
standard notation.

Lemma 1.19

(a) If P ≡α Q then FV(P ) = FV(Q);
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10 The λ-calculus

(b) The relation ≡α is reflexive, transitive and symmetric. That is,
for all P , Q, R, we have:

(reflexivity) P ≡α P ,
(transitivity) P ≡α Q, Q ≡α R =⇒ P ≡α R,
(symmetry) P ≡α Q =⇒ Q ≡α P .

Proof For (a), see A1.5(f) in Appendix A1. For (b): reflexivity and
transitivity are obvious; for symmetry, if P goes to Q by a change of
bound variable, further changes can be found that bring Q back to P ;
details are in Appendix A1, A1.5(e).

Lemma 1.20 If we remove from Lemma 1.16 the condition on variables
bound in M , and replace ‘≡’ by ‘≡α ’, that lemma stays true.

Proof By [CF58, p. 95, Section 3E Theorem 2(c)].

Lemma 1.21 M ≡α M ′, N ≡α N ′ =⇒ [N/x]M ≡α [N ′/x]M ′.

Proof By Appendix A1’s Lemma A1.10.

Note 1.22 Lemma 1.21 can be viewed as saying that the opera-
tion of substitution is well-behaved with respect to α-conversion: if we
α-convert the inputs of a substitution, then the output will not change
by anything more complicated than ≡α . All the operations to be intro-
duced later will also be well-behaved in a similar sense. (More details are
in Appendix A1.) Thus, when a bound variable in a term P threatens
to cause some trouble, for example by making a particular substitution
complicated, we can simply change it to a new harmless variable and
use the resulting new term instead of P .

Further, two α-convertible terms play identical roles in nearly all ap-
plications of λ-calculus, and are always given identical interpretations;
so it makes sense to think of them as identical. In fact most writers use
‘P ≡ Q’ to mean ‘P ≡α Q’; the present book will do the same from
Chapter 3 onward.

Remark 1.23 (Simultaneous substitution) It is possible to modify
the definition of [N/x]M in 1.12 to define simultaneous substitution

[N1/x1 , . . . , Nn/xn ]M

for n ≥ 2. We shall not need the details here, as only very simple special
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