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Preface

Sometimes in mathematics a simple-looking observation opens up a new
road to a fertile field. Such an observation was made independently by
Garrett Birkhoff [25] and Hans Samelson [192], who remarked that one can
use Hilbert’s (projective) metric and the contraction mapping principle to
prove some of the theorems of Perron and Frobenius concerning eigenvectors
and eigenvalues of nonnegative matrices. This idea has been pivotal for the
development of nonlinear Perron–Frobenius theory.

In the past few decades a number of strikingly detailed nonlinear exten-
sions of Perron–Frobenius theory have been obtained. These results provide
an extensive analysis of the eigenvectors and eigenvalues of various classes of
order-preserving (monotone) nonlinear maps and give information about their
iterative behavior and periodic orbits. Particular classes of order-preserving
maps for which there exist nonlinear Perron–Frobenius theorems include sub-
homogeneous maps, topical maps, and integral-preserving maps. The latter
class of order-preserving maps can be regarded as a nonlinear generalization
of column stochastic matrices, whereas topical maps generalize row stochastic
matrices

The main purpose of this book is to give a systematic, self-contained intro-
duction to nonlinear Perron–Frobenius theory and to provide a guide to various
challenging open problems. We hope that it will be a stimulating source for
non-experts to learn and appreciate this subject. To keep our task manageable,
we restrict ourselves to finite-dimensional vector spaces, which allows us to
avoid the use of sophisticated fixed-point theorems, the fixed-point index, and
topological degree theory. The material in this book requires familiarity only
with basic real analysis and topology, and is accessible to graduate students.

Classical Perron–Frobenius theory was developed in the early 1900s. In
fact, Perron published his work [179, 180] on eigenvalues and eigenvectors
of matrices with positive coefficients in 1907. His results were generalized by

http://www.cambridge.org/9780521898812
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89881-2 - Nonlinear Perron–Frobenius Theory
Bas Lemmens and Roger Nussbaum
Frontmatter
More information

x Preface

Frobenius, in a series of papers [70–72] a few years later, to irreducible matri-
ces with nonnegative coefficients. Their collective results and subsequent work
are known today as Perron–Frobenius theory and are considered one of the
most beautiful topics in linear algebra. The theory has numerous applications
in probability theory, game theory, information theory, dynamical systems
theory, mathematical biology, mathematical economics, and computer science.

In a seminal paper, Kreı̆n and Rutman [117] placed the Perron–Frobenius
theorem in the more general context of linear operators that leave a cone in a
Banach space invariant. Their work has led to numerous studies of the spec-
tral theory of positive linear operators on Banach spaces, including work by
Bonsall [29–32] and Schaefer [193–195]. A detailed account can be found
in Schaefer’s book [196]. In their work Kreı̆n and Rutman combined analytic
methods with geometric ones. Among other methods they applied the Brouwer
fixed-point theorem to find a positive eigenvector of a nonsingular matrix that
leaves a cone invariant. Their geometric ideas are another source of inspiration
for nonlinear Perron–Frobenius theory.

The book contains nine chapters and two appendices. The first four chapters
contain preliminaries to Chapters 5, 6, 7, 8, and 9, which form the core of the
book. The main objective of Chapter 1 is to introduce the reader to a variety
of questions in nonlinear Perron–Frobenius theory. To this end we recall the
classical results from Perron–Frobenius theory. Some of their proofs are given
in Appendix B and are nonlinear in spirit. We also introduce various classes
of nonlinear order-preserving maps for which there exist nonlinear Perron–
Frobenius theorems and provide motivating examples.

Chapter 2 develops the relation between order-preserving maps and non-
expansive maps. It shows how various classes of order-preserving maps are
non-expansive under Hilbert’s metric, Thompson’s metric, or a polyhedral
norm. At the heart of these results lies the observation by Birkhoff and Samel-
son. In addition, several results concerning the geometry and topology of
Hilbert’s and Thompson’s metric spaces are collected.

Chapter 3 covers several useful topics on the iterative behavior of non-
expansive maps including ω-limit sets, fixed-point theorems, horofunctions,
and horoballs. It also contains a discussion of “Denjoy–Wolff type” theorems
for fixed-point free non-expansive maps on metric spaces whose geometry
resembles that of a hyperbolic space, which are due to Beardon [18, 19] and
were further developed by Karlsson [99].

Chapter 4 focuses on the dynamics of sup-norm non-expansive maps.
A characteristic property of sup-norm non-expansive maps is that either all
orbits are unbounded or each orbit converges to a periodic orbit. More-
over, there exists an a-priori upper bound for the periods of their periodic
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Preface xi

points in terms of the dimension of the underlying space. These results are
a key ingredient in the analysis of the iterative behavior of order-preserving
subhomogeneous maps on polyhedral cones. In addition, the dynamics and
periodic orbits of topical maps are discussed.

Chapter 5 deals with eigenvectors and the cone spectral radius of order-
preserving homogeneous maps on closed cones in a finite-dimensional vector
space. The cone spectrum and the cone spectral radius are analyzed. Among
other results it is shown that there exists an eigenvector in the cone corre-
sponding to the cone spectral radius. The chapter also treats the continuity
problem of the cone spectral radius and discusses nonlinear generalizations of
the classical Collatz–Wielandt formula for the spectral radius of nonnegative
matrices.

Chapter 6 is mainly concerned with the question whether there exists an
eigenvector in the interior of the cone for a given order-preserving homo-
geneous map. It appears that this problem is irreducibly difficult. Several
general principles are discussed that are helpful when faced with this problem.
These principles and their limitations are illustrated by analyzing particular
order-preserving homogeneous maps involving means.

In Chapter 7 we illustrate how the results from Chapters 5 and 6 can be
applied to finding solutions to various matrix scaling problems. We follow the
fixed-point approach, as pioneered by Menon [143]. Among other matters we
discuss the elegant solution, independently discovered by Sinkhorn and Knopp
[206] and Brualdi, Parter, and Schneider [39], of the classic D AD problem:
Given an n × n nonnegative matrix A, when do there exist positive diagonal
matrices D and E such that D AE is doubly stochastic?

In Chapter 8 we derive a variety of results for order-preserving subhomo-
geneous maps on finite-dimensional cones. A central question is the behavior
of the iterates of such maps. We provide a detailed analysis of the periodic
orbits of order-preserving subhomogeneous maps on polyhedral cones. We
also discuss “Denjoy–Wolff type” theorems for order-preserving homogeneous
maps which do not have an eigenvector in the interior of the cone.

Chapter 9 is devoted to nonlinear Perron–Frobenius theorems for order-
preserving integral-preserving maps on the standard positive cone. Such maps
are non-expansive under the �1-norm. It is shown how the dynamics of
order-preserving integral-preserving maps is related to the dynamics of lower
semi-lattice homomorphisms. This connection yields a complete combinatorial
characterization of the set of possible periods of periodic points of order-
preserving integral-preserving maps in terms of periods of so-called admissible
arrays. This characterization allows one to compute the set of possible periods
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xii Preface

of periodic points of order-preserving integral-preserving maps on the standard
positive cone in finite time.

This book does not attempt to be an encyclopedic coverage of nonlinear
Perron–Frobenius theory, even for finite-dimensional spaces. The expert reader
may note that the following topics have been omitted: applications to the theory
of ordinary differential equations [87,88,115,164,228], the cycle time problem
[36, 51, 152], and the spectral theory of order-preserving convex maps [3, 4].
However, the authors believe that an understanding of the material in this book
will leave the reader well equipped to master the existing literature on these
topics.

Nonlinear Perron–Frobenius theory is related to monotone dynamical sys-
tems theory. In the theory of monotone dynamical systems one considers
discrete and continuous dynamical systems that are strongly order-preserving
or strongly monotone. Pioneering work in this field was done by Hirsch [87]
who showed, among other results, that in a continuous time strongly mono-
tone dynamical system almost all pre-compact orbits converge to the set of
equilibrium points. For discrete time strongly monotone dynamical systems
one has generic convergence to periodic orbits under appropriate conditions;
see [182]. An extensive overview of these results was given by Hirsch and
Smith [89]; see also Smith [207]. In monotone dynamical systems theory,
emphasis is placed on strong monotonicity. If, however, one only assumes the
dynamical system to be monotone, most of the theory is not applicable. In non-
linear Perron–Frobenius theory one usually considers discrete time dynamical
systems that are only monotone (order-preserving), but satisfy an additional
assumption such as subhomogeneity, additive homogeneity, or the integral-
preserving condition. Another notable difference between the two theories is
that in monotone dynamical systems theory one usually assumes the system to
be differentiable. In nonlinear Perron–Frobenius theory, the discrete dynamical
system is often only continuous. These different assumptions on the dynami-
cal system require different methods and give the two theories a very different
character. We hope that this book will also be a valuable addition to the existing
literature on monotone dynamical systems theory.

Acknowledgment

We are grateful to our wives Elizabeth and Joyce for their patience and
continued support during the long process of writing this book.

http://www.cambridge.org/9780521898812
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521898812: 


