
ANALYTIC COMBINATORICS

Analytic combinatorics aims to enable precise quantitative predictions of the proper-
ties of large combinatorial structures. The theory has emerged over recent decades
as essential both for the analysis of algorithms and for the study of scientific models
in many disciplines, including probability theory, statistical physics, computational
biology and information theory. With a careful combination of symbolic enumera-
tion methods and complex analysis, drawing heavily on generating functions, results
of sweeping generality emerge that can be applied in particular to fundamental struc-
tures such as permutations, sequences, strings, walks, paths, trees, graphs and maps.

This account is the definitive treatment of the topic. In order to make it self-
contained, the authors give full coverage of the underlying mathematics and give a
thorough treatment of both classical and modern applications of the theory. The text is
complemented with exercises, examples, appendices and notes throughout the book to
aid understanding. The book can be used as a reference for researchers, as a textbook
for an advanced undergraduate or a graduate course on the subject, or for self-study.
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Preface

ANALYTIC COMBINATORICS aims at predicting precisely the properties of large
structured combinatorial configurations, through an approach based extensively on
analytic methods. Generating functions are the central objects of study of the theory.

Analytic combinatorics starts from an exact enumerative description of combina-
torial structures by means of generating functions: these make their first appearance as
purely formal algebraic objects. Next, generating functions are interpreted as analytic
objects, that is, as mappings of the complex plane into itself. Singularities determine
a function’s coefficients in asymptotic form and lead to precise estimates for counting
sequences. This chain of reasoning applies to a large number of problems of discrete
mathematics relative to words, compositions, partitions, trees, permutations, graphs,
mappings, planar configurations, and so on. A suitable adaptation of the methods also
opens the way to the quantitative analysis of characteristic parameters of large random
structures, via a perturbational approach.

THE APPROACH to quantitative problems of discrete mathematics provided by
analytic combinatorics can be viewed as an operational calculus for combinatorics
organized around three components.

Symbolic methods develops systematic relations between some of the major
constructions of discrete mathematics and operations on generating func-
tions that exactly encode counting sequences.
Complex asymptotics elaborates a collection of methods by which one can
extract asymptotic counting information from generating functions, once
these are viewed as analytic transformations of the complex domain. Singu-
larities then appear to be a key determinant of asymptotic behaviour.
Random structures concerns itself with probabilistic properties of large ran-
dom structures. Which properties hold with high probability? Which laws
govern randomness in large objects? In the context of analytic combina-
torics, these questions are treated by a deformation (adding auxiliary vari-
ables) and a perturbation (examining the effect of small variations of such
auxiliary variables) of the standard enumerative theory.

The present book expounds this view by means of a very large number of examples
concerning classical objects of discrete mathematics and combinatorics. The eventual
goal is an effective way of quantifying metric properties of large random structures.

ix
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x PREFACE

Given its capacity of quantifying properties of large discrete structures, Analytic
Combinatorics is susceptible to many applications, not only within combinatorics it-
self, but, perhaps more importantly, within other areas of science where discrete prob-
abilistic models recurrently surface, like statistical physics, computational biology,
electrical engineering, and information theory. Last but not least, the analysis of al-
gorithms and data structures in computer science has served and still serves as an
important incentive for the development of the theory.

� � � � � �

Part A: Symbolic methods. This part specifically develops Symbolic methods, which
constitute a unified algebraic theory dedicated to setting up functional relations be-
tween counting generating functions. As it turns out, a collection of general (and
simple) theorems provide a systematic translation mechanism between combinatorial
constructions and operations on generating functions. This translation process is a
purely formal one. In fact, with regard to basic counting, two parallel frameworks
coexist—one for unlabelled structures and ordinary generating functions, the other
for labelled structures and exponential generating functions. Furthermore, within the
theory, parameters of combinatorial configurations can be easily taken into account
by adding supplementary variables. Three chapters then form Part A: Chapter I deals
with unlabelled objects; Chapter II develops labelled objects in a parallel way; Chap-
ter III treats multivariate aspects of the theory suitable for the analysis of parameters
of combinatorial structures.

� � � � � �

Part B: Complex asymptotics. This part specifically expounds Complex asymptotics,
which is a unified analytic theory dedicated to the process of extracting asymptotic in-
formation from counting generating functions. A collection of general (and simple)
theorems now provide a systematic translation mechanism between generating func-
tions and asymptotic forms of coefficients. Five chapters form this part. Chapter IV
serves as an introduction to complex-analytic methods and proceeds with the treatment
of meromorphic functions, that is, functions whose singularities are poles, rational
functions being the simplest case. Chapter V develops applications of rational and
meromorphic asymptotics of generating functions, with numerous applications related
to words and languages, walks and graphs, as well as permutations. Chapter VI devel-
ops a general theory of singularity analysis that applies to a wide variety of singular-
ity types, such as square-root or logarithmic, and has consequences regarding trees as
well as other recursively-defined combinatorial classes. Chapter VII presents appli-
cations of singularity analysis to 2–regular graphs and polynomials, trees of various
sorts, mappings, context-free languages, walks, and maps. It contains in particular a
discussion of the analysis of coefficients of algebraic functions. Chapter VIII explores
saddle-point methods, which are instrumental in analysing functions with a violent
growth at a singularity, as well as many functions with a singularity only at infinity
(i.e., entire functions).

� � � � � �

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-89806-5 - Analytic Combinatorics
Philippe Flajolet and Robert Sedgewick
Frontmatter
More information

http://www.cambridge.org/9780521898065
http://www.cambridge.org
http://www.cambridge.org


PREFACE xi

Part C: Random structures. This part is comprised of Chapter IX, which is dedi-
cated to the analysis of multivariate generating functions viewed as deformation and
perturbation of simple (univariate) functions. Many known laws of probability theory,
either discrete or continuous, from Poisson to Gaussian and stable distributions, are
found to arise in combinatorics, by a process combining symbolic methods, complex
asymptotics, and perturbation methods. As a consequence, many important character-
istics of classical combinatorial structures can be precisely quantified in distribution.

� � � � � �

Part D: Appendices. Appendix A summarizes some key elementary concepts of
combinatorics and asymptotics, with entries relative to asymptotic expansions, lan-
guages, and trees, among others. Appendix B recapitulates the necessary background
in complex analysis. It may be viewed as a self-contained minicourse on the subject,
with entries relative to analytic functions, the Gamma function, the implicit function
theorem, and Mellin transforms. Appendix C recalls some of the basic notions of
probability theory that are useful in analytic combinatorics.

� � � � � �

THIS BOOK is meant to be reader-friendly. Each major method is abundantly il-
lustrated by means of concrete Examples1 treated in detail—there are scores of them,
spanning from a fraction of a page to several pages—offering a complete treatment of
a specific problem. These are borrowed not only from combinatorics itself but also
from neighbouring areas of science. With a view to addressing not only mathemati-
cians of varied profiles but also scientists of other disciplines, Analytic Combinatorics
is self-contained, including ample appendices that recapitulate the necessary back-
ground in combinatorics, complex function theory, and probability. A rich set of short
Notes—there are more than 450 of them—are inserted in the text2 and can provide
exercises meant for self-study or for student practice, as well as introductions to the
vast body of literature that is available. We have also made every effort to focus on
core ideas rather than technical details, supposing a certain amount of mathematical
maturity but only basic prerequisites on the part of our gentle readers. The book is
also meant to be strongly problem-oriented, and indeed it can be regarded as a man-
ual, or even a huge algorithm, guiding the reader to the solution of a very large variety
of problems regarding discrete mathematical models of varied origins. In this spirit,
many of our developments connect nicely with computer algebra and symbolic ma-
nipulation systems.

COURSES can be (and indeed have been) based on the book in various ways.
Chapters I–III on Symbolic methods serve as a systematic yet accessible introduc-
tion to the formal side of combinatorial enumeration. As such it organizes trans-
parently some of the rich material found in treatises3 such as those of Bergeron–
Labelle–Leroux, Comtet, Goulden–Jackson, and Stanley. Chapters IV–VIII relative to
Complex asymptotics provide a large set of concrete examples illustrating the power

1Examples are marked by “Example · · · �”.
2Notes are indicated by � · · · �.
3References are to be found in the bibliography section at the end of the book.
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xii PREFACE

of classical complex analysis and of asymptotic analysis outside of their traditional
range of applications. This material can thus be used in courses of either pure or
applied mathematics, providing a wealth of non-classical examples. In addition, the
quiet but ubiquitous presence of symbolic manipulation systems provides a number of
illustrations of the power of these systems while making it possible to test and con-
cretely experiment with a great many combinatorial models. Symbolic systems allow
for instance for fast random generation, close examination of non-asymptotic regimes,
efficient experimentation with analytic expansions and singularities, and so on.

Our initial motivation when starting this project was to build a coherent set of
methods useful in the analysis of algorithms, a domain of computer science now well-
developed and presented in books by Knuth, Hofri, Mahmoud, and Szpankowski, in
the survey by Vitter–Flajolet, as well as in our earlier Introduction to the Analysis of
Algorithms published in 1996. This book, Analytic Combinatorics, can then be used
as a systematic presentation of methods that have proved immensely useful in this
area; see in particular the Art of Computer Programming by Knuth for background.
Studies in statistical physics (van Rensburg, and others), statistics (e.g., David and
Barton) and probability theory (e.g., Billingsley, Feller), mathematical logic (Burris’
book), analytic number theory (e.g., Tenenbaum), computational biology (Waterman’s
textbook), as well as information theory (e.g., the books by Cover–Thomas, MacKay,
and Szpankowski) point to many startling connections with yet other areas of science.
The book may thus be useful as a supplementary reference on methods and applica-
tions in courses on statistics, probability theory, statistical physics, finite model the-
ory, analytic number theory, information theory, computer algebra, complex analysis,
or analysis of algorithms.
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