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Prologue

For most of human history we maneuvered our way through the world based on an intuitive
understanding of physics, an understanding wired into our brains by millions of years of evolu-
tion and constantly bolstered by our everyday experience. This intuition has served us very well,
and functions perfectly at the typical scales of human life — so perfectly, in fact, that we rarely
even think about it. It took many centuries before anyone even tried to formulate this under-
standing; centuries more before the slightest evidence suggested that these assumptions might
not always hold. When the twin revolutions of relativity and quantum mechanics overturned
twentieth-century physics, they also overturned this intuitive notion of the world.

In spite of this, the direct effect at the human scale has been small. Our cars do not run
on Szilard engines. Very few freeways, even in Los Angeles, have signs saying “Speed Limit
300,000 km/s.” And human intuition remains rooted in its evolutionary origins. It takes years of
training for scientists to learn the habits of thought appropriate to quantum mechanics; and even
then, surprises still come along in the areas we think we understand the best.

Technology has transformed how we live our lives. Computers and communications depend
on the amazingly rapid developments of electronics, which in turn derive from our understand-
ing of quantum mechanics: we use the microscopic movements of electrons in solids to do work
and play games; pulses of coherent light in optical fibers tie the world together. But the theories
underlying this technology — computer science and information theory — were built on a fun-
damentally classical view of the world. These two theories have been fantastically successful —
so successful that for many years no one worried (and few even recognized) that they depended
on physical assumptions that, at the smallest scales, did not hold. It was only in the past two
decades that we realized these theories are only part of a vastly richer subject. This is the subject
of quantum information science.

The precursors of quantum information science arrived in the 1980s, building on many years
of earlier work on the foundations of quantum mechanics, and spurred by the development of
new and powerful experimental methods, such as laser cooling, electromagnetic traps, and optical
microcavities. But it was in the 1990s that the revolution began in earnest. Stimulated in large part
by the stunning discovery of Peter Shor’s quantum factoring algorithm, dozens and then hundreds
of researchers began to examine the properties of quantum theory with a new eye. How could
superposition, interference, and entanglement be combined to produce new and better forms of

XV
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XVvi Prologue

information processing — new algorithms, new communication protocols, and at the same time
new ways of understanding the physical world? The result, nearly two decades later, has been an
astonishing avalanche of new ideas. The century-old dog of quantum mechanics has learned a
whole host of new tricks, and the output shows no signs of stopping.

In addition to its technological promise, quantum information science has dramatically
changed our understanding of quantum physics. It had already been long recognized that there
were deep connections between information theory and the laws of thermodynamics. Quantum
measurement also seemed to connect information and physics in a fundamental way, where
acquiring information about a quantum system was accompanied by unavoidable disturbance.
These connections have now spread through the broad field of quantum mechanics. Long-studied
systems in optical and condensed matter physics have yielded new insights to an analysis based
on the presence and flow of quantum information. Just as quantum effects have been repurposed
as resources for information processing, information concepts have provided a new window on
physics.

The rapid early development of quantum information science, however, was accompanied
by immediate skepticism. The same developments in the foundations of quantum theory that had
led to the ideas of quantum information had brought a new appreciation of the power of deco-
herence — how unavoidable interactions between a quantum system and its external environment
cause large-scale superpositions to decay and destroy interference effects. Quantum algorithms
were based on idealized models, in which large quantum systems undergo perfect unitary evo-
lution. The larger a quantum system, the more strongly it interacts with its environment, and
the more rapidly decoherence will destroy the superpositions and interference effects on which
quantum computing depends. Schrédinger’s cat, far from being in a superposition of alive and
dead, would decohere in an infinitesimal fraction of a second into a probabilistic mixture. The
power of decoherence to screen quantum effects at macroscopic levels explains why quantum
mechanics was never even suspected for the vast majority of human history.

From a computational point of view, we can think of decoherence as a source of computa-
tional errors. In the early days of classical computation, it was feared that large-scale computation
might be impossible because of errors: however unlikely they might be, in a sufficiently large
computation errors would eventually happen and corrupt the output. To address this concern,
John von Neumann studied models of computation and concluded that in fact reliable compu-
tations of unlimited size were possible, provided that the rates of error were sufficiently low.
The key was error correction: the information in a computer would be stored redundantly using
error-correcting codes, and throughout the running of a program the computer would constantly
check for errors and correct them when they occur.

Skeptics of quantum computation argued that a similar solution was impossible for a quan-
tum computer, because of two constraints that do not apply to a classical digital computer. First,
quantum information cannot be reliably copied — this is the famous no-cloning theorem. And
second, errors are detected by measuring the system, but measurements destroy quantum super-
positions and eliminate the interference effects on which quantum computers depend. Moreover,
unlike digital computers, the allowed states of a quantum system form a continuum. Small im-
precisions in the control of the computer could accumulate, eventually derailing the computation.
This effect is what has prevented large-scale analog computation.

Fortunately, all these intuitive arguments proved to be incorrect. It is true that quantum infor-
mation cannot be copied; but it can be spread redundantly over multiple subsystems in a way that
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protects it from local errors. It is possible to perform measurements that reveal the presence of
errors without probing the actual state of the stored information. And while quantum states form
a continuum, this rests on a discrete structure, just like a digital computer; the ability to correct
a well-chosen set of discrete errors grants the ability to correct all of their linear combinations
as well. Within a few years, the first quantum error-correcting codes were discovered; a theory
of the broad class of stabilizer codes, analogous to classical linear codes, had been developed;
and threshold theorems had been proven, showing that a quantum computer could be constructed
fault-tolerantly in such a way that for sufficiently low rates of error (due to decoherence, imper-
fect control, or other sources) quantum computations of unlimited length were possible.

Since these early results the field of quantum error correction has dramatically expanded.
Brand new codes, and new fault-tolerant techniques, have moved the stringent requirements
on error rates closer and closer to reality, even as experiments have reduced the error rates to
lower and lower levels. New techniques have also been found to prevent errors — by effectively
eliminating the interaction with the environment, in dynamical decoupling; by rendering the sys-
tem immune to noise with particular symmetries, in decoherence-free subspaces and noiseless
subsystems; or by encoding quantum information into naturally robust degrees of freedom, in
topological quantum computing.

The world of quantum error correction is already vastly rich, and growing richer all the time.
This book will help you enter it, or act as a map and reference for those already knowledgeable.
We invite you to come in.

Daniel A. Lidar and Todd A. Brun
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Preface and guide to the reader

We were inspired to put this book together during the process of organizing the First International
Conference on Quantum Error Correction at the University of Southern California (in December
2007, with a sequel in December 2011). With many of the world’s foremost experts in the various
branches of quantum error correction gathered together in Los Angeles, we solicited chapters on
what we thought were the most important topics in the broad field. As editors, we then faced
the difficult challenge of integrating material from many expert authors into one comprehensive
and yet coherent volume. To achieve this feeling of coherence, we asked all our contributors to
work with a single, common notation, and to work with the authors of other chapters in order to
minimize overlap and maximize synchronicity. This proved hard to enforce, and while we made
every effort to achieve consistency among the different chapters, this goal was surely only partly
met. To the extent that the reader discovers inconsistencies, we as editors take full responsibility.
The resulting book is not a textbook; for one, it doesn’t include any exercises, and figures are
not abundant. Moreover, it can only be a snapshot of such a rapidly evolving subject as quantum
error correction. Nevertheless, we believe that the basic results in the field are now well enough
established that this book, with its extensive index and list of references to the literature, will
serve both as a reference for experts and as a guidebook for new researchers, for some years to
come.

This book is organized into eight parts, containing a total of 26 chapters by 27 authors, some
of whom wrote or co-wrote more than one chapter. Part I (with contributions by Panos Aliferis,
Dave Bacon, Todd Brun, Daniel Lidar, and Lorenza Viola) is an introduction; it contains five
chapters covering the basics of decoherence and quantum noise, quantum error-correcting codes,
dynamical decoupling, decoherence-free subspaces and subsystems, and fault tolerance. Readers
interested in a comprehensive introduction to the field, at the graduate course level, will do well
to read this first part. It is roughly equivalent to two one-semester courses. Part II (with contribu-
tions by Todd Brun, Min-Hsiu Hsieh, David Kribs, Ognyan Oreshkov, and David Poulin) presents
several important generalizations of quantum error correction (QEC), accounting for additional
richness in the Hilbert space structure, and for the possibility of continuously correcting errors.
It covers operator QEC, entanglement-assisted QEC, and continuous-time QEC. Part III (with
contributions by Andrew Fletcher, Markus Grassl, Andreas Klappenecker, David Poulin, Martin
Rotteler, and Mark Wilde) examines more advanced topics in quantum error-correcting codes,
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and presents several important classes of specialized quantum codes, in particular quantum con-
volutional codes, nonadditive quantum codes, iterative quantum coding systems (along with a
discussion of optimal decoding strategies), algebraic quantum coding theory, and optimization-
based QEC. Part IV (with contributions by Ren-Bao Liu, Martin Rotteler, Zhen-Yu Wang, and
Pawel Wocjan) considers advanced topics in dynamical decoupling, focusing in particular on
high-order methods that allow error cancellation to any desired order in perturbation theory, and
on the efficient construction of dynamical decoupling sequences using combinatorial methods.
Part V (with contributions by Todd Brun, Debbie Leung, Daniel Lidar, Ognyan Oreshkov, and
Paolo Zanardi) considers alternatives to the standard “circuit model” of quantum computation, in
particular holonomic and measurement-based quantum computation. Part VI (with contributions
by Héctor Bombin, Austin Fowler, and Kovid Goyal) concerns topological methods in QEC, par-
ticularly topological codes and cluster state quantum computation. Part VII (with contributions
by Dave Bacon, Jacob Taylor, Lorenza Viola, and Mark Wilde) deals with issues of practical im-
plementation. It covers representative early experiments in QEC and dynamical decoupling, and
discusses the implementation of error correction and fault-tolerance ideas in quantum comput-
ing architectures and quantum communication. Finally, Part VIII (with contributions by Robert
Alicki, Harold Baranger, Eduardo Mucciolo, and Eduardo Novais) takes a critical look at the
assumptions going into the fault-tolerant threshold theorems, and how they may not necessarily
hold in realistic systems.
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