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Chapter1
Introduction to decoherence and noise in open
quantum systems
Daniel A. Lidar and Todd A. Brun

1.1 Introduction
This chapter gives the physical and mathematical basis of decoherence in quantum systems, with
particular emphasis on its importance in quantum information theory and quantum computation.
We assume that the reader is already familiar with the basics of quantum mechanics, such as
wave functions, the Schrödinger equation, and Hilbert spaces, which are covered in standard
textbooks. Nevertheless, all basic concepts will be at least briefly defined and described. A work-
ing knowledge of graduate-level linear algebra and calculus is also assumed.

In quantum information processing, the term decoherence is often used loosely to describe
any kind of noise that can affect a quantum system. This can include sources of noise that seem,
qualitatively, to be quite different from each other. These noise sources include:

(i) Random driving forces from the environment (e.g., Brownian motion).
(ii) Interactions that produce entanglement between the system and the environment.

(iii) Statistical imprecision in the experimental controls on the system (e.g., timing errors, fre-
quency fluctuations, etc.).

Remarkably, all of these sources of noise can be described by an almost identical mathe-
matical framework, in which pure quantum states can evolve into mixed quantum states, and
the quantum effects necessary for information processing – interference, entanglement, and re-
versible evolution – are disrupted.

The chapter begins by examining a highly schematic model of decoherence, involving sys-
tems of qubits, but uses this model to present the mathematical formalism used in describing
more realistic systems as well. We will derive from this simple model the idea of the completely
positive trace-preserving map, the most widely used description of quantum noise, and show
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4 Daniel A. Lidar and Todd A. Brun

how it is equivalent to a stochastic error model. From this basic framework, we will also describe
a continuous noise model: the quantum master equation.

After describing basic models of decoherence, we will discuss experimental methods of
characterizing the ill effects. In the simplest models, decoherence can often be characterized by a
few simple time scales: commonly T1 (the thermalization time scale) and T2 (the dephasing time
scale). On a less simplified basis, one can try to determine an exact mathematical description of
the quantum evolution, including the effects of noise, by quantum process tomography.

In the remainder of the chapter we will briefly cover several additional topics. While the
simplest case of decoherence is the case where we are simply trying to preserve quantum in-
formation, more generally we wish to process that information as well, generally by applying
unitary quantum gates. We will show how even a single dominant source of noise can manifest
itself as different noise processes for different gates. We will compare our simple model to more
realistic environments, and briefly discuss new issues that may arise, such as non-Markovian
evolution and Zeno-like effects. We will also touch on Hamiltonian environment modes, which
are more suitable descriptions for some approaches to error correction or suppression (especially
dynamical decoupling).

Various methods have been proposed to combat the effects of decoherence in quantum in-
formation processing, and these are the subject of the rest of this book. They include straight-
forward attempts to cool and isolate the quantum system from its environment; techniques based
on error-correcting codes; the use of decoherence-free subspaces and subsystems when the de-
coherence has certain symmetry properties; dynamical decoupling methods of error suppression,
using rapid unitary pulses to suppress the effects of the system–environment interaction; and the
use of topological properties to encode protected quantum information so that it is robust against
local perturbations.

1.2 Brief introduction to quantum mechanics and quantum computing
There are many outstanding general introductions to quantum mechanics, and our purpose here
is not to try to add to this list, but rather to provide a quick and relatively technical introduction to
many of the concepts used later in the book. For a general introduction we recommend Chapter 2
in the excellent book by Nielsen and Chuang [NC00]. Our introduction to some extent overlaps
with that book, but also complements it by covering a number of topics not mentioned there,
which are particularly relevant to recent developments in quantum decoherence and noise miti-
gation. In particular, we cover the Dyson and Magnus expansions of time-dependent perturbation
theory, general maps on quantum states, and weak measurements. Another excellent introduction
is the book by Breuer and Petruccione [BP02], which covers the theory of open quantum systems
in great detail.

1.2.1 States and spaces
Quantum states reside in, or act on, Hilbert spaces. A Hilbert space H is a real or complex inner
product space (always complex in quantum mechanics) that is also a complete metric space with
respect to the distance function induced by the inner product. A metric space M is a set where a
notion of distance (called a metric) between elements of the set is defined. M is called complete
if every Cauchy sequence in M converges in M .
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Introduction to decoherence and noise in open quantum systems 5

1.2.1.1 Quantum states Quantum mechanics makes predictions about the evolution of quan-
tum states and the outcomes of measurements when a system is in a particular quantum state. A
general quantum state is a positive operator ρ called a density matrix whose trace is equal to 1,
and whose domain and range are Hilbert spaces. We denote the set of all states by

S (H ) ≡ {ρ ∈ B(H ) : ρ ≥ 0,Trρ = 1}, (1.1)

where B(H ) is the set of all bounded linear operators on H . “Bounded” means that the operator
has a finite norm; we will define such norms later, in Section 1.2.6. A more general situation
is when B maps between two different Hilbert spaces H1 and H2, in which case we write
B(H1,H2). Of course, linear operators need not always be bounded (though in most of the
applications in this book that will indeed be the case). We denote by L (H1,H2) the set of
all linear operators from Hilbert space H1 to Hilbert space H2, and by T (H1,H2) the set
of all superoperators: mappings from L (H1) to L (H2) [the notation L (H ) is shorthand for
L (H ,H )]. The name “superoperator” reflects the fact that a map Φ ∈ T (H1,H2) transforms
operators acting on H1 into operators acting on H2. Note that the two Hilbert spaces H1,H2

may have different dimensions.
An operator A is Hermitian if all its eigenvalues are real, or equivalently if A = A†, where

A† denotes the operation of taking the transpose of A as well the complex conjugate of every
matrix element, whichever basis A is represented in. The notation ρ ≥ 0 means that ρ is positive
semidefinite, i.e., it is Hermitian and all of its eigenvalues are nonnegative. The sum of all of ρ’s
diagonal elements is denoted Trρ.1 Since Trρ = 1, clearly at least one of the eigenvalues must
be strictly positive.

The properties ρ ≥ 0 and Trρ = 1 are a consequence of the probabilistic interpretation
of quantum mechanics, which states that a quantum state yields a valid probability distribution
over possible measurement outcomes for any measurement. When ρ is written as a matrix in a
basis in which it is diagonal, its diagonal elements are probabilities of mutually exclusive events.
Therefore these diagonal elements must be positive and sum to one. When ρ has rank 1 (the
rank is the number of linearly independent eigenvectors with nonzero eigenvalues) it is said to be
pure. Otherwise it is mixed. A simple test for this, which one can easily verify, is a computation
of Tr(ρ2). When Tr(ρ2) = 1 the state is pure, and when Tr(ρ2) < 1 it is mixed.

When ρ is pure it can be written as an outer product of two vectors, which reads ρ =
|ψ〉〈ψ| in standard Dirac bra-ket notation. When it is written in an explicit basis representation the
normalized vector (ket) |ψ〉 ∈ H is called the wave function in many textbooks. It is convenient
to think operationally of a bra 〈ψ| as the row vector that is the complex conjugate and transpose
of the column vector ket |ψ〉, i.e., 〈ψ| = |ψ〉†.

Let us pick an orthonormal basis {|i〉}d−1
i=0 for the Hilbert space H , where d ≡ dim(H )

is the dimension of the Hilbert space. We write the inner product in Dirac notation as 〈·|·〉.
This is in general a complex number. Orthonormality of the basis is then expressed as 〈i|j〉 =
δij , where δij is the Kronecker symbol (δij = 1 if i = j, and 0 otherwise). Since {|i〉} is a
basis we can write |ψ〉 =

∑d−1
i=0 αi|i〉 for any ket |ψ〉, while the corresponding bra becomes

1 More formally, in this book we deal almost exclusively with linear trace-class bounded operators that map between
separable Hilbert spaces. A Hilbert space H is separable if and only if it admits a countable orthonormal basis. A
bounded linear operator A : H �→ H , where H is separable, is said to be in the trace class if for some (and
hence all) orthonormal bases {|k〉}k of H the sum of positive terms

∑
k〈k|

√
A†A|k〉 is finite. In this case, the sum∑

k〈k|A|k〉 is absolutely convergent and is independent of the choice of the orthonormal basis. This value is called
the trace of A, denoted by Tr(A).
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6 Daniel A. Lidar and Todd A. Brun

〈ψ| =
∑d−1
i=0 α

∗
i 〈i|. The numbers αi = 〈i|ψ〉 ∈ C are called amplitudes. Since |ψ〉 is normalized

we have 1 = 〈ψ|ψ〉 =
∑d−1
i=0 |αi|2. This implies Tr(ρ) = 1, since for a pure state Tr(ρ) = 〈ψ|ψ〉.

The positive numbers |αi|2 ≤ 1 play the role of a probability distribution, a fact we will explain
in more detail when we discuss measurements, below.

The outer product of any two vectors |ψ〉 =
∑d−1
i=0 αi|i〉 and |φ〉 =

∑d−1
i=0 βi|i〉 can be

written in the basis {|i〉} as |ψ〉〈φ| =
∑d−1
i,i′=0 αiβ

∗
i′ |i〉〈i′|, where the operator |i〉〈i′| ∈ B(H )

acts as (|i〉〈i′|)|i′′〉 = 〈i′|i′′〉|i〉 on any basis element |i′′〉.

1.2.1.2 Qubits The case d = 2 of a two-level system is special: it defines a quantum bit, or
qubit, for which a pure state can always be written as

|ψ〉 = α|0〉 + β|1〉, |α|2 + |β|2 = 1. (1.2)

The basis states |0〉 and |1〉 are defined to be the eigenstates of the Pauli spin matrix σz with
eigenvalues 1 and −1, respectively. Here are all three Pauli spin matrices:

σx =
(

0 1
1 0

)
= X, σy =

(
0 −i
i 0

)
= Y, σz =

(
1 0
0 −1

)
= Z. (1.3)

In addition, often the 2 × 2 identity matrix I is denoted by σ0. A qubit is the simplest possible
quantum mechanical system. There are many physical embodiments of such a system including
the spin of a spin-1/2 particle (e.g., an electron), the polarization states of a photon, two hyperfine
states of a trapped atom or ion, two neighboring levels of a Rydberg atom, or the presence or
absence of a photon in a microcavity. All of these have been proposed in various schemes for
quantum information and quantum computation, and used in actual experiments. The review
[LJL+10] provides a comprehensive survey.

A global phase may be assigned arbitrarily to the state |ψ〉 = α|0〉 + β|1〉 in Eq. (1.2), so
that all physically distinct pure states of a single qubit form a two-parameter space. A useful
parametrization is in terms of two angular variables θ and φ:

|ψ〉 = cos(θ/2)e−iφ/2|0〉 + sin(θ/2)eiφ/2|1〉 , (1.4)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. These two parameters define a point on the Bloch sphere.
The north and south poles of the sphere represent the eigenstates of σz , and the eigenstates of σx
and σy lie on the equator. Orthogonal states always lie opposite each other on the sphere.

If we allow states to be mixed, we represent a qubit by a density matrix ρ; the most general
qubit density matrix can be written as

ρ = p|ψ〉〈ψ| + (1 − p)|ψ̄〉〈ψ̄| , (1.5)

where |ψ〉 and |ψ̄〉 are two orthogonal pure states, 〈ψ|ψ̄〉 = 0. The mixed states of a qubit form
a three parameter family:

ρ =
[
1 + r

2
cos2(θ/2) +

1 − r

2
sin2(θ/2)

]
|0〉〈0|

+
[
1 + r

2
sin2(θ/2) +

1 − r

2
cos2(θ/2)

]
|1〉〈1|

+ r cos(θ/2) sin(θ/2)
[
eiφ|0〉〈1| + e−iφ|1〉〈0|] , (1.6)
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Introduction to decoherence and noise in open quantum systems 7

where θ and φ are the same angular parameters as before and 0 ≤ r ≤ 1. The limit r = 1 is
the set of pure states, parametrized as in Eq. (1.4), while r = 0 is the completely mixed state
ρ = I/2, where I = σ0 is the identity matrix. This state is the same as the state of a classical
unbiased coin. Thus we can think of the Bloch sphere as having pure states on its surface and
mixed states in its interior; and the distance r from the center is a measure of the state’s purity. It
is simply related to the parameter p in Eq. (1.5): p = (1 + r)/2.

For two qubits, the Hilbert space H2 ⊗ H2 has a tensor-product basis:

|0〉A ⊗ |0〉B ≡ |00〉, (1.7a)

|0〉A ⊗ |1〉B ≡ |01〉, (1.7b)

|1〉A ⊗ |0〉B ≡ |10〉, (1.7c)

|1〉A ⊗ |1〉B ≡ |11〉. (1.7d)

We define tensor products formally in Section 1.2.4. Similarly, forN qubits we can define a basis
{|jN−1jN−2 · · · j0〉}, jk = 0, 1. A useful labeling of these 2N basis vectors is by the integers
0 ≤ j < 2N whose binary expressions are jN−1 · · · j0:

|j〉 ≡ |jN−1 · · · j0〉, j =
N−1∑
k=0

jk2k . (1.8)

1.2.1.3 Mixed states and the Bloch space Since a mixed state has rank at least 2, it can be
written as

ρ =
d∑
i=1

ri|φi〉〈φi|, (1.9)

where at least two of the ris are nonzero and the set {|φi〉} is again an orthonormal basis for H .
This is called the spectral decomposition of ρ, since the ri are its eigenvalues and the |φi〉 are
its eigenvectors. Since Tr(ρ) = 1 we have

∑d
i=1 ri = 1 and since ρ ≥ 0 we have ri ≥ 0 for

all i. If we pick an arbitrary orthonormal basis {|i〉} for H then ρ need not be diagonal and can
be written in the form ρ =

∑d
i=1 aij |i〉〈j|. The matrix A ≡ {aij} then satisfies Tr(A) = 1 and

A ≥ 0. Every positive matrix can be diagonalized with a unitary transformation. When this is
done we recover the spectral decomposition (1.9).

It is possible to give a geometric characterization of density matrices by using the Bloch
vector representation for an arbitrary d-dimensional Hilbert space H [KK05]. This works as
follows: Let F0 ≡ I and let {Fμ : Tr(Fμ) = 0}d2−1

μ=1 be a basis for the set of traceless Hermitian
matrices in B(H ). Assume further that Tr(FμFν) = dδμυ ∀μ, ν, i.e., the F s are mutually
orthogonal with respect to the Hilbert–Schmidt inner product 〈A|B〉 ≡ Tr(A†B), which is the
natural inner product on B(H ), when this space is a Hilbert space. Hence any state ρ can be
expanded as

ρ =
1
d

⎛⎝I +
d2−1∑
μ=1

bμFμ

⎞⎠ ; bμ = Tr[ρFμ] ≡ 〈Fμ〉ρ, (1.10)

The vector b = (b1, ..., bN2−1) ∈ R
N2−1 of expectation values (more on this notion in the mea-

surements, Section 1.2.5) is called the Bloch vector, and knowing its components is equivalent to
complete knowledge of the corresponding state ρ, via the mapping b 
→ ρ= 1

d (I+
∑d2−1
μ=1 bμFμ).
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8 Daniel A. Lidar and Todd A. Brun

Let n denote a unit vector, i.e., n ∈ R
d2−1 and

∑d2−1
i=1 n2

i = 1, and define Fn ≡ ∑d2−1
μ=1 nμFμ.

Let the minimum eigenvalue of each Fn be denoted m(Fn). The “Bloch space” B(Rd
2−1) is the

set of all Bloch vectors and is a closed convex set, since the set of states S (H ) is closed and
convex, and the map b 
→ ρ is linear homeomorphic. The Bloch space is characterized in the
“spherical coordinates” determined by {Fn} as

B(Rd
2−1) =

{
b = rn ∈ R

d2−1 : r ≤ 1
|m(Fn)|

}
. (1.11)

This result is useful for visualization of quantum states. For example, for two qubits the Bloch
space is given by Eq. (1.11) with d = 4, which corresponds to a certain 15-dimensional convex
set. The Bloch space of a qubit is defined with the {Fμ} being the Pauli matrices; it is a simple
sphere, since it so happens that for a qubit the minimum eigenvalues m(Fn) are 1 for all Fn.

1.2.2 Quantum gates and the dynamics of isolated (closed) systems

1.2.2.1 Schrödinger equation The evolution of a quantum state is governed by the Schrödinger
equation:

∂ρ

∂t
= − i

�
[H, ρ]. (1.12)

The Hermitian operator H ∈ B(H ) is called the Hamiltonian and is the “generator” of the
evolution. It is the sum of the (quantized) kinetic and potential energies of the system. The symbol
� ≈ 10−34 joule second is the Planck constant and has units of energy multiplied by time (or,
equivalently, units of action). From now on we will use units where � = 1, which means that H
has units of inverse time (frequency). The symbol [·, ·] is the commutator: [H, ρ] ≡ Hρ − ρH .
Since H is Hermitian the solution to the Schrödinger equation is

ρ(t) = U(t)ρ(0)U †(t), (1.13)

where U is a unitary operator (U † = U−1) sometimes called the propagator, and is related to H
via

∂U

∂t
= −iHU. (1.14)

When H is time independent we have the simple solution U(t) = exp(−iHt), assuming
the boundary condition U(0) = I , where I is the identity operator.

Note that given U(t) for all times t we can compute the Hamiltonian as the logarithm of
U(t). However, rather than taking the actual log of U(t), which would require proper handling of
branch cuts in the complex plane, we can obtainH(t) by computing the “logarithmic derivative”:

H(t) = −i∂U(t)
∂t

U−1(t). (1.15)

1.2.2.2 Dyson series When H is time dependent it need not commute with itself at different
times and Eq. (1.14) has the formal solution

U(t) = T+ exp
[
−i

∫ t

0

H(t′)dt′
]
, (1.16)
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Introduction to decoherence and noise in open quantum systems 9

where T+ is the time-ordering operator. This means that the solution can be expressed as an
infinite sum, called the Dyson series:

U(t) = I +
∞∑
n=1

Sn(t), (1.17)

where each term is a time-ordered multiple integral

Sn(t) ≡ (−i)n
∫ t

0

dt1H(t1)
∫ t1

0

dt2H(t2) · · ·
∫ tn−1

0

dtnH(tn), (1.18)

where “time-ordered” means with early to late times being composed from right to left.
When H is time independent each of the multiple integrals becomes Sn(t) = (−iHt)n/n!,

so that U(t) = exp(−iHt), as it should.
The Dyson series (1.17) has the advantage of providing a simple recipe for generating terms

to arbitrarily high order. As we will see in Section 1.2.6.1, it also converges for all t provided
H is a bounded operator for all t, but it has the disadvantage that the partial sum Uk(t) ≡ I +∑k
n=1 Sn(t) is not unitary. This is sometimes a problem in quantum computation applications,

where we are often interested in unitary transformations.

1.2.2.3 Magnus expansion An alternative to the Dyson series is the Magnus expansion, which
has the advantage that it is unitary to all orders. This makes it particularly useful for applications
in quantum computation, such as in dynamical decoupling, as we will see in Chapter 4. Like the
Dyson expansion, the Magnus expansion at time t is an operator series

Ω(t) ≡
∞∑
n=1

Ωn(t) (1.19)

such that Ωn(t) is nth order in the Hamiltonian H(t), but now the series appears in the exponen-
tial:

U(t) = exp [Ω(t)] . (1.20)

Thus, for a fixed time T , the time evolution generated by the time-dependent HamiltonianH(t) is
equivalent to the time evolution generated by the time-independent effective Hamiltonian Heff ≡
i
T Ω(T ).

The first few terms in the Magnus expansion are

Ω1(t) = −i
∫ t

0

dt1 H(t1), (1.21a)

Ω2(t) = −1
2

∫ t

0

dt1

∫ t1

0

dt2 [H(t1), H(t2)] , (1.21b)

Ω3(t) =
i

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]).

(1.21c)

Higher-order terms can be computed using a recursive formula, but unfortunately, in contrast to
the Dyson series, they do not have a simple structure. In general, Ωn(t) is the time integral of a
sum of (n−1)-nested commutators with coefficients related to the Bernoulli numbers, each with

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89787-7 - Quantum Error Correction
Edited by Daniel A. Lidar and Todd A. Brun
Excerpt
More information

http://www.cambridge.org/9780521897877
http://www.cambridge.org
http://www.cambridge.org


10 Daniel A. Lidar and Todd A. Brun

n factors of H(t). The Magnus expansion is thus an infinite series in Ht; a sufficient condition
for convergence is ∫ t

0

dt′ ‖H(t′)‖ < π, (1.22)

but the Magnus expansion need not otherwise converge, which is a disadvantage it has com-
pared to the Dyson expansion. The review [BCO+09] provides a comprehensive discussion of
the Magnus and Dyson expansions.

1.2.2.4 Quantum gates You can verify that when ρ = |ψ〉〈ψ|, i.e., a pure state, the Schrödinger
equation (1.12) becomes the familiar

∂|ψ〉
∂t

= −iH|ψ〉, (1.23)

and has the solution |ψ(t)〉 = U(t)|ψ(0)〉. The propagator U(t) is the same unitary operator as
the one we just discussed.

It is often convenient to treat time evolutions at the level of unitary transformations rather
than explicitly solving the Schrödinger equation. In such cases time can be treated as a discrete
variable:

|ψn〉 = UnUn−1 · · ·U1|ψ0〉. (1.24)

If the unitary operator Un is weak, that is, close to the identity, one can always find a Hamiltonian
operator Hn such that

Un = e−iHnδt ≈ I − iHnδt, (1.25)

where δt is an appropriately short time interval. Thus, one can easily recover the Schrödinger
equation from a description in terms of unitary operators:

δ|ψn〉 = |ψn〉 − |ψn−1〉 = (Un − I)|ψn−1〉 ≈ −iHn|ψn−1〉δt . (1.26)

Linear combinations of the Pauli operators σx, σy , and σz , together with the identity I , are
sufficient to produce any operator on a single qubit. To specify any unitary transformation it
suffices to give its effect on a complete set of basis vectors. We will consider only a fairly limited
set of two-qubit transformations, and no transformations involving more than two qubits, but the
simple formalism we derive readily generalizes to higher-dimensional systems.

Let us examine a couple of examples of two-qubit transformations. The controlled-NOT gate
(or CNOT) is widely used in quantum computation; applied to the tensor-product basis vectors
[Eqs. (1.7a)–(1.7d)] it gives

UCNOT|00〉 = |00〉, (1.27a)

UCNOT|01〉 = |01〉, (1.27b)

UCNOT|10〉 = |11〉, (1.27c)

UCNOT|11〉 = |10〉 . (1.27d)

If the first qubit is in state |0〉, this gate leaves the second qubit unchanged; if the first qubit
is in state |1〉, the second qubit is flipped |0〉 ↔ |1〉. Hence the name: whether a NOT gate is
performed on the second qubit is controlled by the first qubit. In terms of single-qubit operators,
UCNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗ σx.
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