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1  The origins and uses of
complex signals

Engineering and applied science rely heavily on complex variables and complex analysis
to model and analyze real physical effects. Why should this be so? That is, why should
real measurable effects be represented by complex signals? The ready answer is that one
complex signal (or channel) can carry information about two real signals (or two real
channels), and the algebra and geometry of analyzing these two real signals as if they
were one complex signal brings economies and insights that would not otherwise emerge.
But ready answers beg for clarity. In this chapter we aim to provide it. In the bargain, we
intend to clarify the language of engineers and applied scientists who casually speak of
complex velocities, complex electromagnetic fields, complex baseband signals, complex
channels, and so on, when what they are really speaking of is the x- and y-coordinates
of velocity, the x- and y-components of an electric field, the in-phase and quadrature
components of a modulating waveform, and the sine and cosine channels of a modulator
or demodulator.

For electromagnetics, oceanography, atmospheric science, and other disciplines where
two-dimensional trajectories bring insight into the underlying physics, it is the complex
representation of an ellipse that motivates an interest in complex analysis. For commu-
nication theory and signal processing, where amplitude and phase modulations carry
information, it is the complex baseband representation of a real bandpass signal that
motivates an interest in complex analysis.

In Section 1.1, we shall begin with an elementary introduction to complex represen-
tations for Cartesian coordinates and two-dimensional signals. Then we shall proceed
to a discussion of phasors and Lissajous figures in Sections 1.2 and 1.3. We will find
that phasors are a complex representation for the motion of an undamped harmonic
oscillator and Lissajous figures are a complex representation for polarized electromag-
netic fields. The study of communication signals in Section 1.4 then leads to the Hilbert
transform, the complex analytic signal, and various principles for modulating signals.
Section 1.5 demonstrates how real signals can be loaded into the real and imaginary
parts of a complex signal in order to make efficient use of the fast Fourier transform
(FFT).

The second half of this chapter deals with complex random variables and signals.
In Section 1.6, we introduce the univariate complex Gaussian probability density func-
tion (pdf) as an alternative parameterization for the bivariate pdf of two real correlated
Gaussian random variables. We will see that the well-known form of the univariate
complex Gaussian pdf models only a special case of the bivariate real pdf, where the
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4 The origins and uses of complex signals

two real random variables are independent and have equal variances. This special case
is called proper or circular, and it corresponds to a uniform phase distribution of the
complex random variable. In general, however, the complex Gaussian pdf depends not
only on the variance but also on another term, which we will call the complementary
variance. In Section 1.7, we extend this discussion to complex random signals. Using
the polarization ellipse as an example, we will find an interplay of reality/complexity,
propriety/impropriety, and wide-sense stationarity/nonstationarity. Section 1.8 provides
a first glance at the mathematical framework that underpins the study of complex random
variables in this book. Finally, Section 1.9 gives a brief survey of some recent papers
that apply the theory of improper and noncircular complex random signals in commu-
nications, array processing, machine learning, acoustics, optics, and oceanography.

1.1 Cartesian, polar, and complex representations
of two-dimensional signals

It is commonplace to represent two Cartesian coordinates (u, v) in their two polar
coordinates (4, 6), or as the single complex coordinate x = u + jv = Ael’. The
real coordinates (u, v) <— (A4, 0) are thus equivalent to the complex coordinates
u +jv < Ael’. The virtue of this complex representation is that it leads to an eco-
nomical algebra and an evocative geometry, especially when polar coordinates 4 and
0 are used. This virtue extends to vector-valued coordinates (u, v), with complex rep-
resentation x = u + jv. For example, x could be a mega-vector composed by stacking
scan lines from a sterecoscopic image, in which case u would be the image recorded
by camera one and v would be the image recorded by camera two. In oceanographic
applications, u and v could be the two orthogonal components of surface velocity and
x would be the complex velocity. Or x could be a window’s worth of a discrete-time
communications signal. In the context of communications, radar, and sonar, u and v
are called the in-phase and quadrature components, respectively, and they are obtained
as sampled-data versions of a continuous-time signal that has been demodulated with
a quadrature demodulator. The quadrature demodulator itself is designed to extract a
baseband information-bearing signal from a passband carrying signal. This is explained
in more detail in Section 1.4.

The virtue of complex representations extends to the analysis of time-varying coordi-
nates (u(), v(t)), which we call two-dimensional signals, and which we represent as the
complex signal x(¢) = u(t) + ju(t) = A(t)e??®. Of course, the next generalization of this
narrative would be to vector-valued complex signals x(7) = [x1(¢), x2(2), . .., xy ()], a
generalization that produces technical difficulties, but not conceptual ones. The two best
examples are complex-demodulated signals in a multi-sensor antenna array, in which
case xx(¢) is the complex signal recorded at sensor &, and complex-demodulated sig-
nals in spectral subbands of a wideband communication signal, in which case xj(¢) is
the complex signal recorded in subband k. When these signals are themselves sampled
in time, then the vector-valued discrete-time sequence is x[n], with x[n] = x(nT) a
sampled-data version of x().
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1.2 Simple harmonic oscillator and phasors 5

This introductory account of complex signals gives us the chance to remake a very
important point. In engineering and applied science, measured signals are real. Cor-
respondingly, in all of our examples, the components u and v are real. It is only our
representation x that is complex. Thus one channel’s worth of complex signal serves
to represent two channels’ worth of real signals. There is no fundamental reason why
this would have to be done. We aim to make the point in this book that the algebraic
economies, probabilistic computations, and geometrical insights that accrue to complex
representations justify their use. The examples of the next several sections give a preview
of the power of complex representations.

1.2 Simple harmonic oscillator and phasors

The damped harmonic oscillator models damped pendulums and second-order electrical
and mechanical systems. A measurement (of position or voltage) in such a system obeys
the second-order, homogeneous, linear differential equation

d? d
@u(t) + 2Ewy au(t) + wiu(t) = 0. (1.1)

The corresponding characteristic equation is
5%+ 28 wos + wf = 0. (1.2)

Ifthe damping coefficient & satisfies 0 < & < 1, the system is called underdamped, and
the quadratic equation (1.2) has two complex conjugate roots s = —&wq + j/1 — £2awyg
and s, = s;. The real homogeneous response of the damped harmonic oscillator is then

u(t) = 46" + de e’ = Re{de’e"} = Ae™5 cos(V 1 — 2wt +6), (1.3)

and 4 and 8 may be determined from the initial values of u(¢) and (d/d¢)u(¢) at t = 0.
The real response (1.3) is the sum of two complex modal responses, or the real part of
one of them. In anticipation of our continuing development, we might say that 4ei’e*!’
is a complex representation of the real signal u(#).

For the undamped system with damping coefficient £ = 0, we have s; = jw, and the
solution is

u(t) = Re {49 &'} = A cos(wot + 6). (1.4)

In this case, Aelel’ is the complex representation of the real signal 4 cos(wyt + 6).
The complex signal in its polar form

x(1) = 4@ = 4o’ 1 e R, (1.5)

is called a rotating phasor. The rotator e/ rotates the stationary phasor Ae at the
angular rate of wy radians per second. The rotating phasor is periodic with period 27 /wy,
thus overwriting itself every 2w /wy seconds. Euler’s identity allows us to express the
rotating phasor in its Cartesian form as

x(t) = A cos(wot + 0) + jA sin(wot + 0). (1.6)
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6 The origins and uses of complex signals
Aejee.jw()t]
Aei® (1 =0)
Re

Leifei®0ag
Figure 1.1 Stationary and rotating phasors.
Thus, the complex representation of the undamped simple harmonic oscillator turns
out to be the trajectory in the complex plane of a rotating phasor of radian fre-
quency wo, with starting point Ael’ at r = 0. The rotating phasor of Fig. 1.1 is
illustrative.

The rotating phasor is one of the most fundamental complex signals we shall encounter
in this book, as it is a basic building block for more complicated signals. As we
build these more complicated signals, we will allow 4 and € to be correlated random
processes.

1.3 Lissajous figures, ellipses, and electromagnetic polarization

We might say that the circularly rotating phasor x(¢) = Ael’el®’ = A cos(wot + 0) +
jA sin(wot + 6) is the simplest of Lissajous figures, consisting of real and imaginary
parts that are v /2 radians out of phase. A more general Lissajous figure allows complex
signals of the form

x(t) = u(t) +jv(t) = A, cos(wot + 6,) + jA, cos(wot + 6y). (1.7)

Here the real part u(¢) and the imaginary part v(¢) can be mismatched in amplitude and
phase. This Lissajous figure overwrites itself with period 27 /wy and turns out an ellipse
in the complex plane. (This is still not the most general Lissajous figure, since Lissajous
figures generally also allow different frequencies in the «- and v-components.)

In electromagnetic theory, this complex signal would be the time-varying position of
the electric field vector in the (u, v)-plane perpendicular to the direction of propagation.
Over time, as the electric field vector propagates, it turns out an elliptical corkscrew in
three-dimensional space. But in the two-dimensional plane perpendicular to the direction
of propagation, it turns out an ellipse, so the electric field is said to be elliptically
polarized. As this representation shows, the elliptical polarization may be modeled,
and in fact produced, by the superposition of a one-dimensional, linearly polarized,
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1.3 Lissajous figures, ellipses, and polarization 7

Figure 1.2 A typical polarization ellipse.

component of the form 4, cos(wot + 6,) in the u-direction and another of the form
A, sin(wyt + 0,) in the v-direction.
But there is more. Euler’s identity may be used to write the electric field vector as

x(t) = %Auejg" PN 4 %Aue’je" eIt 4 %jAvejg”ej“’o’ + %jAUe’jg”e’j“’o’
= 5 (Aue™ ™) 9N 4 (A - jdyeI) e, (1.8)

A e A_e -

This representation of the two-dimensional electric field shows it to be the superpo-
sition of a two-dimensional, circularly polarized, component of the form A ei?+el!
and another of the form A_e i%-e~i®! The first rotates counterclockwise (CCW)
and is said to be left-circularly polarized. The second rotates clockwise (CW) and
is said to be right-circularly polarized. In this representation, the complex constants
A, e’ and 4_e %~ fix the amplitude and phase of their respective circularly polarized
components.

The circular representation of the ellipse makes it easy to determine the orientation
of the ellipse and the lengths of the major and minor axes. In fact, by noting that the
magnitude-squared of x(¢) is |x(1)|* = A% + 24, A_ cos(04 + 6_ + 2wot) + A2, it is
easy to see that |x(¢)|> has a maximum value of (44 + A_)? at 6, + 6_ + 2wyt = 2k,
and a minimum value of (4, — A_)? at 6, + 6_ + 2wt = (2k + 1)m. This orients the
major axis of the ellipse at angle (6, — 6_)/2 and fixes the major and minor axis lengths
at 2(A4 + A_)and 2|4, — A_|. A typical polarization ellipse is illustrated in Fig. 1.2.

Jones calculus

It is clear that the polarization ellipse x(#) may be parameterized either by four real
parameters (A,, Ay, 6,,6,) or by two complex parameters (Arel®, A_e%). In the
first case, we modulate the real basis (cos(wgt), sin(wgt)), and in the second case, we
modulate the complex basis (', e71*0"). If we are interested only in the path that the
electric field vector describes, and do not need to evaluate x(#y) at a particular time 7,
knowing the phase differences 6,, — 6, or 6, — 6_ rather than the phases themselves
is sufficient. The choice of parameterization — whether real or complex — is somewhat
arbitrary, but it is common to use the Jones vector [4,,, A,&/®~%)] to describe the state
of polarization. This is illustrated in the following example.
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8 The origins and uses of complex signals

Example 1.1. The Jones vectors for four basic states of polarization are (note that we do
not follow the convention of normalizing Jones vectors to unit norm):

<« x(t) = cos(wyt) horizontal, linear polarization,

1
_0_
| x(t) = jcos(wopt) vertical, linear polarization,

1
—_—
1

<« x(t) = &l CCW (left-) circular polarization,

]

1] ; . . .

[ | x(t) = eI CW (right-) circular polarization.

—Jj

Various polarization filters can be coded with two-by-two complex matrices that selec-
tively pass components of the polarization. For example, consider these two polarization
filters, and their corresponding Jones matrices:

[(1) g] horizontal, linear polarizer,

11 —j . .
= [j IJ] CCW (left-)circular polarizer.
The first of these passes horizontal linear polarization and rejects vertical linear polariza-
tion. Such polarizers are used to reduce vertically polarized glare in Polaroid sunglasses.
The second passes CCW circular polarization and rejects CW circular polarization. And
SO on.

14 Complex modulation, the Hilbert transform, and complex
analytic signals

When analyzing the damped harmonic oscillator or the elliptically polarized electric
field, the appropriate complex representations present themselves naturally. We now
establish that this is so, as well, in the theory of modulation. Here the game is to
modulate a baseband, information-bearing, signal onto a passband carrier signal that
can be radiated from a real antenna onto a real channel. When the aim is to transmit
information from here to there, then the channel may be “air,” cable, or fiber. When the
aim is to transmit information from now to then, then the channel may be a magnetic
recording channel.

Actually, since a sinusoidal carrier signal can be modulated in amplitude and phase,
the game is to modulate two information-bearing signals onto a carrier, suggesting again
that one complex signal might serve to represent these two real signals and provide
insight into how they should be designed. In fact, as we shall see, without the notion of
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1.4 Complex modulation and analytic signals 9

a complex analytic signal, electrical engineers might never have discovered the Hilbert
transform and single-sideband (SSB) modulation as the most spectrally efficient way
to modulate one real channel of baseband information onto a passband carrier. Thus
modulation theory provides the proper context for the study of the Hilbert transform and
complex analytic signals.

1.4.1 Complex modulation using the complex envelope

Let us begin with two real information-bearing signals u(¢) and v(¢), which are combined
in a complex baseband signal as

x(t) = u(t) +ju(t)
= A1) = A(t)cos O(t) + jA(t)sin O(1). (1.9)

The amplitude A(¢) and phase 6(¢) are real. We take u(¢) and v(¢) to be lowpass signals
with Fourier transforms supported on a baseband interval of —Q < w < Q. The repre-
sentation 4(¢)el?®”) is a generalization of the stationary phasor, wherein the fixed radius
and angle of a phasor are replaced by a time-varying radius and angle. It is a simple
matter to go back and forth between x(¢) and (u(¢), v(¢)) and (A(), 6(¢)).

From x(#) we propose to construct the real passband signal

p(t) = Re {x()e"} = A(t)cos(wot + 6()) = u(t)cos(wot) — v(t)sin(wot). (1.10)

In accordance with standard communications terminology, we call x(#) the complex
baseband signal or complex envelope of p(t), A(t) and 6(¢) the amplitude and phase of the
complex envelope, and u(¢) and v(¢) the in-phase and quadrature(-phase) components.
The term “quadrature component” refers to the fact that it is in phase quadrature (+ /2
out of phase) with respect to the in-phase component.

We say the complex envelope x () complex-modulates the complex carrier €', when
what we really mean is that the real amplitude and phase (A(¢), 6(¢)) real-modulate the
amplitude and phase of the real carrier cos(wy?); or the in-phase and quadrature signals
(u(t), v(t)) real-modulate the real in-phase carrier cos(wyf) and the real quadrature
carrier sin(wyt). These are three equivalent ways of saying exactly the same thing.
Figure 1.3(a) suggests a diagram for complex modulation. In Fig. 1.3(b), we stress the
point that complex channels are actually two parallel real channels.

It is worth noting that when 6() is constant (say zero), then modulation is amplitude
modulation only. In the complex plane, the complex baseband signal x(¢) writes out a
trajectory x(¢#) = A(¢) that does not leave the real line. When A(¢) is constant (say 1),
then modulation is phase modulation only. In the complex plane, the complex baseband
signal x(¢) writes out a trajectory x(¢) = e/’ that does not leave the unit circle. In
general quadrature modulation, both A(¢) and 6(¢) are time-varying, and they combine
to write out quite arbitrary trajectories in the complex plane. These trajectories are
composed of real part u(¢) = A(t)cos 6(¢) and imaginary part v(t) = A(¢)sin6(¢), or of
amplitude A4(¢) and phase 6(¢).
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10 The origins and uses of complex signals

cos (wot)
u(r)
p(r)
v(t) d
sin (wo?)
(b)
Figure 1.3 (a) Complex and (b) quadrature modulation.
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Figure 1.4 Baseband spectrum X(w) (solid line) and passband spectrum P(w) (dashed line).

If the complex signal x(¢) has Fourier transform X(w), denoted x(¢) «— X(w), then
x(1)e «— X(w — wp) and x*(t) «<— X*(—w). Thus,

p(t) = Re {x()e"} = Lx ()" + Lx*(t)e i (1.11)

has Hermitian-symmetric Fourier transform
P(w) = 1 X(0 — o) + 3 X*(—w — wp). (1.12)
Because p(¢) is real its Fourier transform satisfies P(w) = P*(—w). Thus, the real part
of P(w) is even, and the imaginary part is odd. Moreover, the magnitude | P(w)| is

even, and the phase £ P(w) is odd. Fanciful spectra X(w) and P(w) are illustrated in
Fig. 1.4.
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1.4 Complex modulation and analytic signals 1

1.4.2 The Hilbert transform, phase splitter, and analytic signal

If the complex baseband signal x(#) can be recovered from the passband signal p(¢), then
the two real channels u(¢) and v(¢) can be easily recovered as u(t) = Re x(¢) = %[x () +
x*(H)]and v(¢) = Im x(¢) = [1/(2))][x(z) — x*(¢)]. But how is x(¢) to be recovered from
p(1)? _

The real operator Re in the definition of p(¢) is applied to the complex signal x (¢)e'**
and returns the real signal p(¢). Suppose there existed an inverse operator @, i.e., a
linear, convolutional, complex operator, that could be applied to the real signal p(¥)
and return the complex signal x(7)e/®’. Then this complex signal could be complex-
demodulated for x (1) = e i’ x(¢). The complex operator & would have to be defined
by an impulse response ¢(¢) <— ®(w), whose Fourier transform ®(w) were zero
for negative frequencies and 2 for positive frequencies, in order to return the signal
x(1)e «—— X(w — wp).

This brings us to the Hilbert transform, the phase splitter, and the complex analytic
signal. The Hilbert transform of a signal p(t) is denoted p(¢), and defined as the linear
shift-invariant operation

pH) = (h* p)t) 2 / h(t = D)p(r)dt «— (HP)@) 2 H(w)P() = P(w).

(1.13)

The impulse response %(¢) and complex frequency response H(w) of the Hilbert trans-
form are defined to be, for € R and w € R,

1
h(t) = — <« —jsgn(w) = H(w). (1.14)

Here sgn(w) is the function

1, w >0,
sgn(w) = < 0, w =0, (1.15)
-1, w<O.

So A(t) is real and odd, and H(w) is imaginary and odd. From the Hilbert transform
h(t) «— H(w) we define the phase splitter

(1) = 8(t) + jh(t) < 1 —j? sgn(w) = 2I'(w) = P(w). (1.16)

The complex frequency response of the phase splitter is ®(w) = 2T"(w), where I'(w)
is the standard unit-step function. The convolution of the complex filter ¢(¢) and the
real signal p(¢) produces the analytic signal y(t) = p(t) + jp(t), with Fourier transform
identity

() = (¢ * p)t) = p(t) +jp(t) < P(w) + sgn(w)P(w) = AT P)(@) = Y (w).
(1.17)

Recall that the Fourier transform P(w) of a real signal p(¢) has Hermitian sym-
metry P(—w) = P*(w), so P(w) for @ < 0 is redundant. In the polar representation
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