Index

3-D and 4-D models
implications of, 169
requirements for, 311
3-D visualization
GEON Integrated Data Viewer, 135
4th-generation hazard assessment methods, definition of, 297

Beowulf clusters, use of, 69
BGS
British Geological Survey, 287
business model, description of, 290
challenges faced by, 288
delivery systems, description of, 290
national digital baseline datasets, description of, 289
Unique Selling Proposition, 288
building geologic timeline
time stratigraphy, 148
building geologic timelines, 145
Age Range Chart, ARC, a Web-based visualization tool, 159
estimating sizes of time intervals and interpolating numerical ages, 148
fidelity of stratigraphic position, 154
First Appearance Datum, FAD, 151
fragility of fossils, 151
inferential tasks, 147
Last Appearance Datum, LAD, 151
marker beds, 153
sequencing tools, 155
seriation, 147
taxonomic instability, 152
time-stratigraphic properties, 153

CHRONOS, 158
computational codes
2D visco-elasto-plastic finite element model, 78
3D visco-elasto-plastic model, 82
CitcomS, 59, 104, 305
EqSim, dynamic rupture, 62
FEGEN, 72
for mantle convection, CitCom, 52

Gale, finite element code, 63
GPPlates, 96, 308
GPPlates Geological Information Model, GPGIM, 103
Hole’s Code, use of, 269
parallel finite element modeling, 71
PDE2D, 72
PyLith, 62, 72
Tecton, quasi-static problems, 62
TERRA, 305
Computational Infrastructure for Geodynamics (CIG), virtual organization, 53
Computational seismology, 305
Computer simulations
use of in geophysics, 52
Continental topography, 295
continuous fields
representation of geological entities, 101
CORBA, Common Object Request Broker
Architecture, 219
crustal geodynamics
physics of the earthquake cycle, 50
CUAHSI
Consortium of Universities for the Advancement of Hydrologic Science, Inc, 195
CUAHSI HIS
central data discovery and integration platform, HIS Central, 201
controlled vocabularies, 204
data publication platform, HydroServer, 200
HydroDesktop, 202
HydroDesktop, hydrologic theme of, 203
HydroDesktop, incompatible time series, 207
Hydrologic Information System, 193
semantic tagging of hydrologic data, 202
service oriented architecture, SOA, 199
the Observations Data Model, ODM, 200
water data services, 201
Water Markup Language, WaterML, 200
WaterML, 204
WaterML XML schema, 204
WaterOneFlow, 200
CUAHSI HIS water observations data sources
- EPA Storage and Retrieval repository, STORET, 194
- Integrated Surface Database of climatic data, National Climate Data Center, 194
- USDA Snowpack Telemetry, SNOTEL, 194
- USGS National Water Information System, NWIS, 194

cyberinfrastructure, 4, 21, 37
- challenges, 342
- DEISA, Distributed European Infrastructure for Supercomputing Applications, 293
- D-GRID Initiative, Germany, 328
- iGEON-India, 332, 336
- initiative in the US, 10
- use of abstraction, 266

data cube
- attribute dimension, 198
- organizing model for hydrologic measurements, 198

data provenance
- logging of, 273
- PML, definition of node set, 272
- PML, Proof Markup Language, 272
- presentation of, 273

data publishing
- citable publications, 327
- Digital Object Identifier, DOI, 328
- Deep Sea Drilling Project, DSDP, 159
- Digital Elevation Models, DEMs
- description of, 253

Earth’s structure and dynamics
- impact of technology and databases, 52
- earthquake catalogs
 - International Seismological Centre (ISC), UK, 213
 - USGS National Earthquake Information Center, NEIC, 213
- earthquake hazards, 297
- earthquake models, 297
- earthquake shake table experiments, 127
- earthquake ShakeMaps, 126
- EarthScope
 - USArray, 51
 - Eastern California Shear Zone, 70
- e-Science initiative, Europe, 10

fourth paradigm, data intensive science, 10

Geoinformatics, 3, 4, 11, 15

Geoinformatics Toolbox, 338

Geoinformatics, iGEON-India
- enumeration of priority application areas, 333
- geoinformatics research topics, 333
- iGEON-India Grid, 338
- observations from workshops, 337
- geologic time
 - correlation and seriation, 148
 - geologic time sequencing tools
 - age/depth plotting, ADP, 158
 - CONCOP9, 157
 - graphical correlation, 157
 - RASC, 156

Index

CUAHSI HIS water observations data sources
- EPA Storage and Retrieval repository, STORET, 194
- Integrated Surface Database of climatic data, National Climate Data Center, 194
- USDA Snowpack Telemetry, SNOTEL, 194
- USGS National Water Information System, NWIS, 194

cyberinfrastructure, 4, 21, 37
- challenges, 342
- DEISA, Distributed European Infrastructure for Supercomputing Applications, 293
- D-GRID Initiative, Germany, 328
- iGEON-India, 332, 336
- initiative in the US, 10
- use of abstraction, 266

data cube
- attribute dimension, 198
- organizing model for hydrologic measurements, 198

data provenance
- logging of, 273
- PML, definition of node set, 272
- PML, Proof Markup Language, 272
- presentation of, 273

data publishing
- citable publications, 327
- Digital Object Identifier, DOI, 328
- Deep Sea Drilling Project, DSDP, 159
- Digital Elevation Models, DEMs
- description of, 253

Earth’s structure and dynamics
- impact of technology and databases, 52
- earthquake catalogs
 - International Seismological Centre (ISC), UK, 213
 - USGS National Earthquake Information Center, NEIC, 213
- earthquake hazards, 297
- earthquake models, 297
- earthquake shake table experiments, 127
- earthquake ShakeMaps, 126
- EarthScope
 - USArray, 51
 - Eastern California Shear Zone, 70
- e-Science initiative, Europe, 10

fourth paradigm, data intensive science, 10

Geoinformatics, 3, 4, 11, 15

Geoinformatics Toolbox, 338

Geoinformatics, iGEON-India
- enumeration of priority application areas, 333
- geoinformatics research topics, 333
- iGEON-India Grid, 338
- observations from workshops, 337
- geologic time
 - correlation and seriation, 148
 - geologic time sequencing tools
 - age/depth plotting, ADP, 158
 - CONCOP9, 157
 - graphical correlation, 157
 - RASC, 156

Unitary Association, 156
GEON Integrated Data Viewer, GEON IDV
- data access methods, 133
- data formats, 133
- data integration, 137
- data source types, 132
- formulas and computations, 138
- IDV bundle files, 138
- installation, 139
- software design, 131
- stereographic visualizations with GeoWall, 137
- symbols and displays, 136
- Unidata IDV, 131
- visualization examples, 135
- GEON LiDAR Workflow description of, 251
- implementation details, 260
- geoscience software tools
 - Generic Mapping Tool, GMT, 133
 - GRASS 3D, 133
 - GRASS GIS software, development in Germany, 324
 - Matlab, 133
 - Geoscience Web Services, GeoWS, 222
- gravity and magnetic data processing
 - Generic Mapping Tools, use of, 228
 - Talwani, 2D forward modeling software package for gravity profiles, 229
 - World Stress Map project, 231
- gravity database
 - relational database implementation, 227
 - terrain correction, 227
 - grid computing, 37
 - Grid Account Management Architecture, GAMA, 41
 - NBCR architecture, 39
- IRIS
 - Data Management Center, DMC, 210
 - data service components, 218
 - data volumes, 212
 - Earthquake Browser, IEB, 134
 - earthquake catalog, 134
 - Service Oriented Architecture, SOA, 214
 - system for data discovery, 217
- Kepler, 238, 274
- actor repository, 239
- definition of, 239
- director and actor abstractions, 274
- distributed computing, 241
- failure recovery capability, 245
- GEON LiDAR Workflow
 - main steps, 243
 - provenance framework, 239
 - provenance recorder, 275
 - Ptolemy II, workflow execution tool, 239
 - Sea Surface Temperature computation and integration, 245
- LiDAR
 - acquisition and processing workflow, 252
 - applications of, 255
challenges in community data distribution, 256
conceptual data processing workflow, 257
description of, 252
flexibility and extensibility of, 262
Light Distance And Ranging, advantages of, 251
possible enhancements, description of, 263
lithospheric deformation, 68, 69, 73
challenges in numerical simulation, 51
Los Angeles’ Future Quake, 124
mantle convection
importance of, 49
modeling, technical challenges of, 50
markup languages
Geography Markup Language, GML, 105
Geoscience Markup Language, GeoSciML, 344
GPlates Markup Language, 104
Metadata catalogs, linking to
ScienceBase, GEON, CatalogConnector, ArcGIS, 345
metadata standards
Darwin Core, 160
Dublin Core, 160
FGDC, 160
Steno Core, 160
Modeling of Mantle-to-Lithosphere-to-Surface Processes, 310
Multi-timescale deformation, 68
Nankai Trough Seismogenic Zone Experiment, NanTroSEIZE, 181
National Geodetic Survey, 226
National Geothermal Data System, NGDS, 347, 350
Citation and contact information, 358
collaboration with USGIn, 350
Data acquisition plan, 366
System Architecture, 361
system design, 352
Neptune database, 158
NetCDF file format, 133, 346
North American magnetic database, 224
Northridge earthquake, 1994, 127
Visualization Process, 127
Ocean Drilling Program, ODP, 159
OneGeology, 346
Lessons learned, 320
linkage to GEOSS, 322
membership, 317
organizational structure, 318
partners, 318
project goals, 317
use of GeoSciML, 320
ontologies, 25, 166, 167
Basic Formal Ontology (BFO), 171
DOLCE, 171
enduring entities, endurants, 168
events, processes, and states, 173
formal perdurant relations, 180
ontology and workflow, 267
perdurant, occurrent, 170
perdurating entities, perdurants, 168
perspectivalism, 171
process hierarchies, is-a and part-of, 178
SNAP and SPAN meta-models, 167
SPAN processual entities, 173
SPAN spatio-temporal regions, 173
SPAN temporal regions, 173
spatial location of processes, 177
SWEET, 25, 166, 171
The SNAP ontology, 171
The SPAN ontology, 173
workflow driven ontology for gravity data, 231
Open Geospatial Consortium
Catalog Service for the Web, CSW, 344
Sensor Observation Service, 198
Web Feature Service, WFS, 105
Web Mapping Services, WMS, 132
OPeNDAP data distribution system, 133, 246, 346
OpenGL, 99
plate tectonics
modeling challenge, description of, 307
reconstruction, 95, 106
synergy between analog and numerical modeling, 312
total reconstruction pole, TRP, 108
probable earthquake scenarios, 117
San Andreas Fault, 70
short- and long-term slips, 81
spatio-temporal entity, 170
San Francisco 1906 Earthquake Simulation, 124
TeraShake simulations, 119
San Francisco 1906 Earthquake Simulation, 124
science communities
ACOS, 23
Cancer Biomedical Informatics Grid, caGrid, 42
CEDAR, 23
National Biomedical Computation Resource, NBCR, 39
Realtime Environment for Analytical Processing project, REAP, 245
Virtual Solar-Terrestrial Observatory, VSTO, 21
scientific workflows
abstraction perspectives, 268
appropriate levels of abstraction, 267
creating a seismic velocity model of the Earth’s crust, example of, 269
creation of magnetic map, 233
description and representation of, 266
gravity and magnetic data processing, creation of gravity contour map, 233
Hole’s Code, abstraction of, 270
problem solving environment, definition of, 237
provenance, description of, 267
representative scenarios of, 269
separation of parts, 271
survey of tools, 273
seismic data
advanced seismic services, 222
catalogs of earthquakes, 213
EarthScope Transportable Array example, 221
seismic data (cont.)
frequency channel, 216
metadata describing time series data, 212
object request brokers, ORBs, 219
record-section plot, 216
seismological products, 213
station identifier, 214
time series of ground motion, 211
tree-oriented access pattern, 217
seismology
data deluge, 51
self describing data formats
CD1.x, UN CTBT, 211
FDSN SEED, 211
semantic web
CMap, 29
OWL-DL, 27
Proof Markup Language, PML, 34
Protégé, 29
semantic data framework, 21
SWOOP, 29
VSTO semantic framework, 26
sensing
direct sensing, 193
remote sensing, 193
services-oriented architecture (SOA)
definition of, 194, 195
Opal Toolkit, 41
simulation as a tool in geosciences, 307
software development practices
at Computational Infrastructure for Geodynamics,
CIG, 55
CIG divergent development approaches, 58
CIG Model Analyzer, 56
software development in tectonics, 62
space-based geodesy, 68
Spatial Data Infrastructure
German federal data infrastructure, GDI.de, 327
German Research Centre for Geosciences, 326
Indian geoscience datasets, availability of, 334
IJOGIS, Inter-Operable GIS, Germany, 323
OneGeology, 321
WDC, Climate, 326
WDC, Marine Environmental Sciences, 326
WDC, Remote Sensing of the Atmosphere, 326
World Data Centers, WDC, 326
Steno Core
correlation uncertainties, 161
relative position, 161
shared vocabulary for stratigraphic correlation and
data-tool integration, 160
temporal scope, 161
TeraShake earthquake simulations, 119
surface and topography, visualization of, 121
TeraShake1, TeraShake2, 119
visualization, self-contouring technique, 123
volume visualization of, 122
THREDDS catalog server, 134, 346
TOPO-EUROPE
4-D Integrated Approaches, description of, 309

Index

collaborative research projects, listing of, 303
crustal thickness map of Europe, 300
description of, 293
Intraplate seismicity, 298
natural laboratory concept, 300
scientific issues, 300
software strategy, description of, 308
The TOPO-EUROPE network, description of, 299
topography and natural hazards, 296
research challenges in, 297
USGIN
critical system components, 344
principles of, 343
reference implementation, 344
sustainability, 348
U.S. Geoscience Information Network, rationale for, 342
USGS resources
Center for LIDAR Information Coordination and
Knowledge, CLICK, 256
Mineral Resources On-Line Spatial Data service, 346
National Map, 346
National Water Information System, 346
USGS Science Strategy, 345
virtual Earth models, 304
virtual observatory, 21
visualization characteristics
accessibility, 118
focus, 118
interactivity, 118
intuitiveness, 117
trainability, 118
visualization tools
Adobe After Effects, 126
Maya, 125, 127
Web portals
BGS Digital Energy Atlas and Library, DEAL, 290
BGS OpenGeoscience, 291
CIG Seismology Web Portal, 63
IJOGIS, Inter-Operable GIS, Germany, 323
OneGeology portal, 319
OpenTopography, 260
TeraShake visualizations, 123
US gravity and magnetic database, 225
workflow
ground gravity workflow, specification of, 231
workflow systems
advantages of, 238
challenges, description of, 247
conceptual workflow, definition of, 243
Kepler, Taverna, Pegasus, Triana, Vistrails, examples
of, 238
Taverna, description of, 275
VisTrails, description of, 277
WDDO-It!, description of, 278
Wings, description of, 279
Wings/Pegasus framework, description of, 280