Index

Abraham-Lorentz equation, 902
Abraham-Minkowski controversy, 526
absorption, 575, 588, 629, 644, 651 coefficient, 608
acceleration field of a moving charge, 875
acceleration four-vector, 836
accelerator, particle, 686, 830, 885
action definition, 917
Lorentz invariance of, 919
total electromagnetic, 926
addition theorem, spherical harmonics, 108, 955
adiabatic invariance, 376
advanced Green function, 722
Aepinus, F., 30
aether, 82, 586, 790, 825
Airy’s formula, 603
Airy, G., 602
Alfvén waves, 587
aluminum, reflectivity of, 633
Ampère’s formula, 34
Ampère’s law, 307
Ampère’s theorem, 345
Ampère, A.-M., 365
Ampère-Maxwell law, 36, 456
Ampérian molecular current, 409
analytic function theory, 221
anapole moment, 348
angle, solid, 71, 319
angular distribution of radiation from a point charge in circular motion, 883
a relativistic source, 880
a slotted sphere, 756
a slowly moving charge, 736
a specified current density, 737
a wire antenna, 738
an antenna array, 742
an electric multipole source, 759
an oscillating electric dipole, 746
an oscillating electric quadrupole, 752
an oscillating magnetic dipole, 750
angular momentum and magnetic moments, 340
conservation of, 516, 854, 930
current density of, 517
of a paraxial beam, 563
of electromagnetic fields, 516
operator, 6, 756
radiation of, 750
angular spectrum of plane waves, 558, 801
anisotropic matter, waves in, 613
anode, 140
anomalous dispersion, 635
antenna, 737
arrays, 741
dipole, 737, 739
phased-array, 743
aperture, diffraction by an, 797
Appleton model for a magnetized plasma, 636
Appleton, E.V, 639
approximation Born, 790
Fraunhofer, 799
Kirchhoff, 799, 803
paraxial, 559, 561
physical optics, 792
atmospheric color, 782
attenuation in conducting-tube waveguides, 684
auxiliary field D defined, 44
matching condition, 45
auxiliary field H defined, 44
matching condition, 45
axial vector, 21
azimuthal symmetry potential problems with, 209
Babinet’s principle for vector fields, 807
Barkhausen, H., 647
battery, 283
beam waist, 560
beam-like waves, 558
Bessel functions, 216, 955
modified, 957
spherical, 957
betatron, 461
biaxial crystal, 613
Big Bang, 699
Biot-Savart law, 35, 304
birefringence, 615
blue sky, Rayleigh explanation of, 782
Bohr magneton, 431
boost, Lorentz, 827, 834
Born approximation, 790
bound charge, 159
boundary conditions and uniqueness, 199, 509
conducting waveguide, 677
Dirichlet, 199
impedance, 686
Kirchhoff, 798, 804
magnetic field of the solar corona, 386
INDEX

mixed, 199, 252
Neumann, 199, 252, 278
temporal, 721
Bragg mirror, 605
bremsstrahlung, 881
Brewster’s angle, 594
canonical momentum, 918
capacitance
cross, 137
matrix, 136
of a circular disk, 135
self, 134
capacitor, 140
fringing fields, 225
with fixed charge, 169
with fixed potential, 172
carrier wave, 556
Cartesian coordinates, 2
Cartesian multipole radiation, 743
Cartesian symmetry, potential problems with, 203
cathode, 140
Cauchy’s theorem, 652
causality, 486, 624, 649, 651, 832
Cavendish, H., 126
cavity resonator
chaos in, 699
closed tube, 695
conducting, 693
density of modes, 697
energy exchange, 700
spherical, 696
center of energy, 519, 854, 857, 930
center of energy theorem, 520
chaos, in a resonant cavity, 699
charge
absence of magnetic, 48
and gauge invariance, 927
bound, 159
conservation of electric, 32, 501
electric, 30
invariance of, 831
inversion, 79
polarization, 159
relaxation in an ohmic medium, 473, 634
space, 274
charge density, 30
at a perfect conductor surface, 130
at a real metal surface, 40
at the surface of a conducting disk, 131
fictitious magnetic, 415
force on, 58
in crystalline silicon, 38
macroscopic versus microscopic, 44
of a point electric dipole, 95
on the surface of a
current-carrying wire, 285
polarization, 118, 159
singularity at a sharp corner or edge, 219
torque on, 58
charged particle motion, 366
and Larmor’s formula, 735
and strong focusing, 356
in a cylindrical electron lens, 218
in a disk-loaded waveguide, 686
in a plane wave, 572, 838
in a plasma, 459
in a synchrotron, 891
in a uniform magnetic field, 366
in crossed fields, 368
in ohmic matter, 275
in the Earth’s magnetic field, 377
in time-harmonic fields, 573
Lagrangian for, 920
with radiation reaction, 899
Cherenkov radiation, 906
Child-Langmuir law, 275
chirp, 646
circuit theory
AC, 486
DC, 284
circular current loop, magnetic field of, 304
circular-tube waveguides, 681
classical electron radius, 778, 903
Clausius-Mossotti formula, 176
closure relation, 202
coaXial transmission line, 667
Colladon, J.-D., 666
color of the daylight sky, 782
of the setting sun, 782
complementarity, 554
complementary objects, diffraction theory, 807
completeness of
Bessel functions, 956
complex exponentials, 12
Legendre polynomials, 107, 953
orthonormal sets of functions, 202
spherical harmonics, 108, 955
complex dielectric function, 608
index of refraction, 608
permittivity, 608
wave impedance, 608
complex logarithm potential, 260
conducting matter
dielectric function, 608
Drude model for, 631
skin depth, 609
waves in, 607
conducting-tube waveguide, 675
absence of TEM waves, 677
boundary conditions, 677
modes, 678
conductivity
frequency-dependent, 625
static Drude, 275
conductors
boundary condition, 130
energy of a collection of, 142
force on, 143
perfect, 126, 431
permeability of, 431
real, 149
spatial dispersion, 657
surface charge density, 130
surface current density, 311
confined waves, 666
conformal mapping, 224
conservation laws
and Lagrangian invariance, 927
in covariant form, 852
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
</table>
| 966 | cosmic microwave background polarization, 545, 781 spectral radiance, 699 Coulomb blockade, 142 Coulomb gauge, 321, 505, 538, 939 Coulomb’s law, 33, 48, 59 for magnetism, 435 Coulomb-Lorentz force, 29, 37, 456, 920 from Hamilton’s equations, 933 from Lagrange’s equations, 925 covariance, relativistic, 834, 848 covariance conservation laws, 852 electrodynamics, 848 equations of particle dynamics, 852 four-vector, 959 Larmor formula, 884 Liénard-Wiechert potentials, 873 Maxwell equations, 849 Crab nebulae, 743 critical angle, 595 cross section absorption, 793 scattering differential (2D), 785 differential (3D), 776 total, 777 total, 793 crystal optics, 613 current Ampérien molecular, 409 bound, 408 displacement, 456 free, 408 in matter, 275 in vacuum, 273 polarization, 458 sheet, 309 sources, 287 steady, 272, 302 current density, 31, 272 at a perfect conductor surface, 311 convection, 273 force on, 301 four-vector, 840 magnetization, 410 of a point magnetic dipole, 343 of electromagnetic angular momentum, 517 of electromagnetic energy, 508 of electromagnetic linear momentum, 514 orbital magnetization, 409 polarization, 458 spin magnetization, 409 torque on, 301 current, electric, 31 cutoff in a conducting waveguide, 674 dielectric waveguide, 691 magnetized plasma, 638 cyclotron frequency, 366 radiation, 882 radius, 367 cylindrical coordinates, 2 cylindrical symmetry potential problems with, 215 Debye–Hückel, 291 delta function one dimension, 11 three dimensions, 14 demagnetization field, 418 density of modes, 697 diamagnet, 407, 422 dielectric constant, 167, 175 of a plasma, 459 of a polar liquid, 212 dielectric function for conducting matter, 631 dielectric matter, 635 dispersive matter, 626 magnetized plasma, 637 negative-index matter, 640 silicon, 636 dielectric matter, 158 constitutive relation, 166 energy of, 178 forces on, 184 linear, 167 Lorentz model for, 635 response to fixed fields, 172 response to free charge, 169 short range forces in, 187 simple, 167 waves in, 584 dielectric permittivity, 167 frequency-dependent, 625 dielectric waveguides, 687 dielectrophoresis, 185 diffraction, 775 Babinet’s principle, 807 by a planar aperture, 797 by a sub-wavelength aperture, 808 Fraunhofer from a circular aperture, 805 of scalar fields, 799 of vector fields, 804 free space, 556 Huygens’ principle, 810 scalar theory, 798 Smythe’s formula, 803 Sommerfeld solution for a half-plane, 797 vector theory, 800 diffusion analogy with electrostatics, 220 in matter, 291 magnetic, 581 dimensional analysis, 181, 243, 291, 395, 727, 730 dipole electric, 92 magnetic, 337 dipole antenna frequency-domain analysis, 737 time-domain analysis, 739 dipole field electric, 96 magnetic, 337 scattered, 778 time-dependent, 728 dipole force electric, 96 time-dependent, 527, 574 magnetic, 373 dipole moment effective, of an aperture, 808 electric, 92 magnetic, 338 conducting sphere, 432 magnetized matter, 411 of a current loop, 339 spin, 340 dipole potential electric scalar, 92 magnetic scalar, 339 magnetic vector, 338 dipole-dipole interaction electric, 98 magnetic, 378 Dirac’s method of constraints, 936 Dirac, P., 901 direct integration Dirichlet Green function, 256 Dirichlet boundary conditions, 199 Dirichlet Green function, 251, 252 direct integration, 256 eigenfunction expansion, 254 magic rule, 253 method of splitting, 258 discontinuity of macroscopic fields, 42 of potential at a dipole layer, 100 discrete symmetries, 502 disk generator, Faraday, 466 dispersion, 651 anomalous, 635 frequency, 624 classical models for, 630
<table>
<thead>
<tr>
<th>INDEX</th>
<th>967</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal, 635</td>
<td>local, 177</td>
</tr>
<tr>
<td>spatial, 656</td>
<td>matching condition, 42</td>
</tr>
<tr>
<td>structural, 674, 679</td>
<td>near a sharp corner or edge, 219</td>
</tr>
<tr>
<td>dispersion relation, 555, 586</td>
<td>of a charged cylinder, 68</td>
</tr>
<tr>
<td>dispersive matter</td>
<td>of a charged line segment, 65</td>
</tr>
<tr>
<td>conservation of energy, 627</td>
<td>of a charged ring, 59</td>
</tr>
<tr>
<td>wave packets in, 641</td>
<td>of a charged sheet, 69</td>
</tr>
<tr>
<td>waves in, 624</td>
<td>of a charged sphere, 68</td>
</tr>
<tr>
<td>displacement current, 36, 456</td>
<td>of a point charge in uniform motion, 716, 844</td>
</tr>
<tr>
<td>divergence theorem</td>
<td>of a point electric dipole, 96</td>
</tr>
<tr>
<td>for a four-vector, 856</td>
<td>of an electric dipole, 92</td>
</tr>
<tr>
<td>for a three-vector, 9</td>
<td>of polarized matter, 162</td>
</tr>
<tr>
<td>domain, magnetic, 443</td>
<td>outside a current-carrying wire, 286</td>
</tr>
<tr>
<td>Doppler effect, 847</td>
<td>electric flux, 65</td>
</tr>
<tr>
<td>double-curl equation, 323</td>
<td>electric force, 58</td>
</tr>
<tr>
<td>double layer, 292</td>
<td>between point charges, 33</td>
</tr>
<tr>
<td>drift velocity, 275, 372</td>
<td>from variation of potential energy, 74</td>
</tr>
<tr>
<td>drift, (\mathbf{E} \times \mathbf{B}), 368</td>
<td>on a dielectric interface, 188</td>
</tr>
<tr>
<td>drift-diffusion equation, 291</td>
<td>on a dielectric sub-volume, 186</td>
</tr>
<tr>
<td>Drude model</td>
<td>on a dipole, 96</td>
</tr>
<tr>
<td>for frequency-dependent conductivity, 631</td>
<td>on a quadrupole, 104</td>
</tr>
<tr>
<td>for static conductivity, 275</td>
<td>on an embedded dielectric, 189</td>
</tr>
<tr>
<td>duality, 49, 503, 566, 677, 808, 851</td>
<td>on an isolated body, 184</td>
</tr>
<tr>
<td>dyadic, 513</td>
<td>electric Hertz vector, 570, 716</td>
</tr>
<tr>
<td>Earnshaw’s theorem, 63</td>
<td>electric multipole expansion, 112</td>
</tr>
<tr>
<td>Eddington, A., 916</td>
<td>Cartesian primitive, 90</td>
</tr>
<tr>
<td>eddy current, 483</td>
<td>traceless, 116</td>
</tr>
<tr>
<td>induced force, 484, 492</td>
<td>spherical, 109</td>
</tr>
<tr>
<td>induced ohmic loss, 484</td>
<td>electric multipoles, 90</td>
</tr>
<tr>
<td>eigenfunction expansion of an arbitrary function, 202</td>
<td>electric polarization, 158</td>
</tr>
<tr>
<td>of Dirichlet Green function, 254</td>
<td>electric quadrupole, 102</td>
</tr>
<tr>
<td>Einstein relation, 291</td>
<td>electric dipole moment, 92</td>
</tr>
<tr>
<td>Einstein summation convention, 4</td>
<td>electric quadrupole radiation, 752</td>
</tr>
<tr>
<td>Einstein, A., 536, 723, 782, 822</td>
<td>electric stress tensor, 81</td>
</tr>
<tr>
<td>electric charge, 30</td>
<td>for a simple dielectric, 188</td>
</tr>
<tr>
<td>and gauge invariance, 927</td>
<td>electric susceptibility, 167</td>
</tr>
<tr>
<td>bound, 159</td>
<td>frequency-dependent, 625</td>
</tr>
<tr>
<td>conservation of, 32, 501</td>
<td>electric torque, 58</td>
</tr>
<tr>
<td>free, 159</td>
<td>electro-kinetic momentum, 515</td>
</tr>
<tr>
<td>invariance of, 831</td>
<td>electromagnet, iron core, 423</td>
</tr>
<tr>
<td>electric current, 31</td>
<td>electromagnetic angular momentum density, 516</td>
</tr>
<tr>
<td>electric dipole, 92</td>
<td>dual tensor, 851</td>
</tr>
<tr>
<td>force on a, 96</td>
<td>energy density, 508</td>
</tr>
<tr>
<td>layer, 98</td>
<td>field-strength tensor, 850, 961</td>
</tr>
<tr>
<td>moment, 92</td>
<td>induction, 462</td>
</tr>
<tr>
<td>point, 95</td>
<td>linear momentum density, 513</td>
</tr>
<tr>
<td>potential, 92</td>
<td>potentials, 503</td>
</tr>
<tr>
<td>potential energy, 97</td>
<td>stress-energy tensor, 853, 962</td>
</tr>
<tr>
<td>time-dependent, 727</td>
<td>electromagnetic fields of a charge in uniform motion, 878</td>
</tr>
<tr>
<td>torque, 97</td>
<td>free, 536, 853, 855</td>
</tr>
<tr>
<td>electric dipole moment, of a conducting sphere, 129</td>
<td>from relativistic charges, 870</td>
</tr>
<tr>
<td>of polarized matter, 159</td>
<td>general properties, 501</td>
</tr>
<tr>
<td>electric dipole radiation, 744</td>
<td>non-classical, 47</td>
</tr>
<tr>
<td>electric field (\mathbf{E})</td>
<td>of charge in arbitrary motion, 874</td>
</tr>
<tr>
<td>of a system of conductors, 142</td>
<td>quasistatic, 455</td>
</tr>
<tr>
<td>of a wave packet, 552</td>
<td>electromotive force (EMF), 282, 462,</td>
</tr>
<tr>
<td>electron microscope, 358</td>
<td>potential theory</td>
</tr>
<tr>
<td>energy of a system of conductors, 142</td>
<td>electromagnetic analogy with diffusion, 220</td>
</tr>
<tr>
<td>field, 58</td>
<td>potential, 60</td>
</tr>
<tr>
<td>induction, 126</td>
<td>complex, 221</td>
</tr>
<tr>
<td>lens, 217</td>
<td>multipole expansion, 90</td>
</tr>
<tr>
<td>potential, 60</td>
<td>near a sharp corner or edge, 219</td>
</tr>
<tr>
<td>potential theory</td>
<td>of a charged line segment, 65</td>
</tr>
<tr>
<td>Laplace’s equation, 198</td>
<td>of a charged ring, 211</td>
</tr>
<tr>
<td>Poisson’s equation, 236</td>
<td>of a conducting sphere, 126</td>
</tr>
<tr>
<td>electrostatic energy potential, 74</td>
<td>of a current source, 287</td>
</tr>
<tr>
<td>total, 76</td>
<td>of a dipole layer, 99</td>
</tr>
<tr>
<td>electrostatics, 58</td>
<td>of a dipole, 260</td>
</tr>
<tr>
<td>history of, 33</td>
<td>of an electric dipole, 92</td>
</tr>
<tr>
<td>EMF, 464</td>
<td>of an electric quadrupole, 102</td>
</tr>
<tr>
<td>energy</td>
<td>of polarized matter, 162</td>
</tr>
<tr>
<td>conservation of, 507, 523, 852</td>
<td>potential theory</td>
</tr>
<tr>
<td>in matter, 588</td>
<td>electromagnetic energy conservation of, 507, 523, 852</td>
</tr>
<tr>
<td>current density, 508</td>
<td>in matter, 588</td>
</tr>
<tr>
<td>density, 508</td>
<td>energy density, 508</td>
</tr>
<tr>
<td>electric dipole, 97</td>
<td>field-strength tensor, 850, 961</td>
</tr>
<tr>
<td>electric dipole-dipole interaction, 98</td>
<td>energy density, 508</td>
</tr>
<tr>
<td>electromagnet, iron core, 423</td>
<td>electromagnetic energy density, 508</td>
</tr>
<tr>
<td>electro-kinetic momentum, 515</td>
<td>field-strength tensor, 850, 961</td>
</tr>
<tr>
<td>electromagnet, iron core, 423</td>
<td>energy density, 508</td>
</tr>
<tr>
<td>field-strength tensor, 850, 961</td>
<td>electromagnetic energy density, 508</td>
</tr>
<tr>
<td>linear momentum density, 513</td>
<td>electromagnetic fields of a charge in uniform motion, 878</td>
</tr>
<tr>
<td>potentials, 503</td>
<td>free, 536, 853, 855</td>
</tr>
<tr>
<td>stress-energy tensor, 853, 962</td>
<td>electromagnetic fields of a charge in uniform motion, 878</td>
</tr>
<tr>
<td>electromagnetic fields</td>
<td>electromagnetic fields of a charge in uniform motion, 878</td>
</tr>
<tr>
<td>of a charge in uniform motion, 878</td>
<td>electromagnetic fields of a charge in uniform motion, 878</td>
</tr>
<tr>
<td>free, 536, 853, 855</td>
<td>electromagnetic fields of a charge in uniform motion, 878</td>
</tr>
<tr>
<td>of a system of conductors, 142</td>
<td>of a system of conductors, 142</td>
</tr>
<tr>
<td>of a wave packet, 552</td>
<td>of a wave packet, 552</td>
</tr>
</tbody>
</table>
INDEX

energy (cont.)
of dielectric matter, 178
of electrostatic interaction, 79
of magnetic matter, 433
relativistic, 837
transport, 593
transport by radiation, 730
velocity
of a plane wave in matter, 544
energy loss
and radiation reaction, 899
by a point particle, relativistic, 884
by electric dipole radiation, 746
by electric multipole radiation, 759
by electric quadrupole radiation, 754
by Joule heating, 280
by magnetic dipole radiation, 750
by particle accelerators, 885
by the classical Bohr atom, 900
in a conducting-tube waveguide, 684
in resistive wires, 510
in resonant cavities, 701
in simple conducting matter, 607
energy velocity
in a conducting-tube waveguide, 682
in Lorentz matter, 644
envelope of a wave packet, 556
equipartition theorem, 698
equipotential surface, 63
Euler, L., 58
evanescent plane wave, 558, 598
events, 823
separation in space-time, 832
Ewald-Oseen extinction theorem, 762
extinction paradox, 796
extinction theorem, 632, 673, 762
extraordinary ray, 615
f-sum rule, 655
Fabry-Perot geometry, 602
far zone, 728
Faraday disk generator, 466
Faraday EMF, 464
Faraday’s cage, 207
Faraday’s law, 35, 460
Faraday, M., 35, 427, 671
ferroelectric, 167
ferromagnet, 407
hard and soft, 443
permeability, 430
Fick’s law, 291
field concept, 34
field lines
charged line segment, 66
electric, 63
electric dipole, 93
for an accelerated point charge, 876
magnetic, 302
magnetic dipole, 338
point charge in a uniform field, 64, 73
refraction of, 173
topology of magnetic, 325
fission, nuclear, 113
flip coil, 464
Froéquét’s theorem, 687
flux
electric, 65
magnetic, 302
flux rule, 464
flux theorem, 10, 462
Fock, V., 775
focusing
by electrostatic fields, 217
by magnetostatic fields, 356, 359
strong, 356
force
Coulomb-Lorentz, 29, 37, 920
electromagnetic on a classical atom, 527
electromagnetic on isolated matter, 526
electrostatic, 58
magnetostatic, 301
on a charged surface, 71
on a conductor, 143
on a magnetic dipole, 373
on a polarizable particle, 574
on an electric dipole, 96
on dielectric matter, 184
on magnetic matter, 435
on particles in free fields, 571
pondermotive, 573
force density four-vector, 852
form factor, 780
four-point resistance probe, 288
four-vector
charge-current density, 840
contravariant, 959
covariant, 959
energy-momentum, 837
force density, 852
frequency-wave vector, 846
general, 834
scalar-vector potential, 842
space-time coordinate, 835
velocity, 836
Fourier analysis, 15
Fourier transform, 554
Fourier-Bessel series, 216
Franklin, B., 30
Franz formulae, 811
Fraunhofer diffraction
of scalar fields, 799
of vector fields, 804
free fields, 536
particle-like properties, 855
radiation, 730
free-space diffraction, 556
free-space Green function, 724
frequency
cyclotron, 366, 459
Larmor, 367, 381
frequency dispersion, 624
Appleton model for, 630
classical models for, 630
Drude model for, 631
Lorentz model for, 635
split-ring model for, 640
frequency spectrum
of Cherenkov radiation, 908
of Heaviside-Feynman radiation, 891
of Liénard-Wiechert radiation, 889
of radiation from an arbitrary current distribution, 888
of synchrotron radiation, 895
Fresnel equations, 590, 762
Furry, W., 835
g-factor, 341
Galilean transformation, 824
Galvani, L., 31
gauge
Coulomb, 321, 505, 538, 725
fixing, 938
invariant, 321, 504
and conservation of charge, 927
and Dirac’s method of constraints, 937
Lorenz, 507, 537, 715
Gauss’ law, 34, 68
Gaussian beam, 559
Gaussian beam, 559
Gaussian diffraction
of scalar fields, 799
of vector fields, 804
free fields, 536
particle-like properties, 855
radiation, 730
free-space diffraction, 556
free-space Green function, 724
frequency
cyclotron, 366, 459
Larmor, 367, 381
frequency dispersion, 624
Appleton model for, 630
classical models for, 630
Drude model for, 631
Lorentz model for, 635
split-ring model for, 640
frequency spectrum
of Cherenkov radiation, 908
of Heaviside-Feynman radiation, 891
of Liénard-Wiechert radiation, 889
of radiation from an arbitrary current distribution, 888
of synchrotron radiation, 895
Fresnel equations, 590, 762
Furry, W., 835
g-factor, 341
Galilean transformation, 824
Galvani, L., 31
gauge
Coulomb, 321, 505, 538, 725
fixing, 938
invariant, 321, 504
and conservation of charge, 927
and Dirac’s method of constraints, 937
Lorenz, 507, 537, 715
Gauss’ law, 34, 68
Gaussian beam, 559
Gaussian diffraction
of scalar fields, 799
of vector fields, 804
free fields, 536
particle-like properties, 855
radiation, 730
free-space diffraction, 556
free-space Green function, 724
frequency
cyclotron, 366, 459
Larmor, 367, 381
frequency dispersion, 624
Appleton model for, 630
classical models for, 630
Drude model for, 631
Lorentz model for, 635
split-ring model for, 640
frequency spectrum
of Cherenkov radiation, 908
of Heaviside-Feynman radiation, 891
of Liénard-Wiechert radiation, 889
of radiation from an arbitrary current distribution, 888
of synchrotron radiation, 895
Fresnel equations, 590, 762
Furry, W., 835

INDEX

magic rule, 253
method of splitting, 258
for free space, 724, 799
cylindrical representation, 256
for Poisson’s equation, 250
for the exterior of a hollow tube, 259
for the Helmholtz equation, 724
for the wave equation, 720
magic rule, 253
Neumann, 252
scalar diffraction theory, 798
Green’s identities, 9
Green’s reciprocity relation, 75, 137
Green, G., 236, 251
grounding a conductor, 135
group velocity, 555, 642
and the index of refraction, 643
dispersion, 645
in a conducting-tube waveguide, 679
in Drude matter, 643
in Lorentz matter, 644
negative, 644
guided waves, 666
Guoy phase, 561
gyromagnetic ratio, 341
Hagens-Rubens relation, 611
hairy ball theorem, 568
Hall effect, quantum, 389
Hamilton’s equations
for fields, 934
for particles, 933
Hamilton’s principle, 916
Hamiltonian
total electromagnetic, 934, 935, 939
treatment of electromodynamics, 931
Hamiltonian density, 934, 937
Hankel functions, 956
Heaviside, O., 639, 671, 870
Heaviside-Poynting fields, 879
heavy ion collisions, 830
helicity, 327, 565
Helmholtz coil, 315
Helmholtz equation, 557, 705
Green function for the, 724
Helmholtz force formula, 188, 439
Helmholtz theorem, 22
Hertz potentials, 725
Hertz vector
electric, 570, 716
magnetic, 569, 716
Hertz, H., 33, 714, 731
heuristic derivation
of the Liénard-Wiechert potentials, 872
of the Maxwell equations, 51
hidden momentum, 521
homopolar generator, Faraday, 466
Huygens’ principle, 799, 804, 810
hyperfine interaction energy, 419
hysteresis, magnetic, 443, 446
image
dipole, 240
force, 238
method for
a conducting cylinder, 248
a conducting sphere, 245, 247
da dielectric cylinder, 249
dielectric boundaries, 240
magnetic matter, 428
multiple conducting planes, 242
one conducting plane, 237
potential, 238
potential states, 239
impedance
boundary condition, 686
in circuit theory, 487
matching, 592
of the vacuum, 585
wave, 586
complex, 608
index manipulations, 962
index of refraction, 585, 762
complex, 608
negative, 590
of silicon dioxide, 637
induced EMF method, 731
inductance, 394
mutual, 396
self, 395
induction
electromagnetic, 462
electrostatic, 126
inertial frame, 823
Infeld, L., 536
information-collecting shell, 872
inhomogeneous plane wave, 598
intensity, 544
interface matching conditions, 42
interfacial wave, 596
intermediate zone, 728
intrinsic impedance, 585
invariance
adiabatic, 376
gauge, 321, 504
rotational, 52, 68, 308, 503, 827, 834
translational, 52, 68, 308, 503, 834
invariant interval, 831
inverse distance, expansion in
spherical harmonics, 109
inverse-square force law, 33
inversion, method of, 246
inversion, space, 18, 21, 52, 502, 690
Ioffe-Pritchard geometry, 377
ionosphere, 633, 639, 666
irrotational current sources, 304
Jacobian determinant, 9
Jeans, J., 197
Jefimenko, O.D., 726
Jeans, J., 197
Jacobian determinant, 9
Kramers-Kr¨ onig relations, 649
klystron, 666
Kirchhoff’s laws, 284
Kirchhoff approximation
for scalar field diffraction, 799
for vector field diffraction, 803
Kirchhoff’s laws, 284
klystron, 666
Kramers-Krönig relations, 649
Kronecker symbol, 4
Lagrange multipliers, 24
Lagrange’s equations
covariant form, 926
for fields, 924
for particles, 917
Lagrangian, 916
approach to the conservation laws, 927
for a free field, 923
for a moving point dipole, 922
for a non-relativistic charge in a field, 920
for a relativistic charge in a field, 921
singular, 936
total electromagnetic, 918, 925
treatment of electromodynamics, 918
Lagrangian density, 923
Landau-Lifshitz equation, 904
Langmuir-Child law, 275
Laplace’s equation, 174, 197
analytic function theory, 221
and multipole theory, 113
in image theory, 237, 239
in magnetostatics, 312, 417
separation of variables, 201
uniqueness of solutions, 199
Larmor frequency, 367, 747
Larmor precession, 381
Larmor’s theorem, 367
Larmor, J., 367
law of squares, 671
left-handed matter, 590
Legendre functions, 209
INDEX

Legendre polynomials, 107, 953
Legendre transformation, 145, 932
length contraction, 830
lens, electrostatic, 217
Lenz' law, 36, 464
Levi-Civita symbol, 4
Liénard-Wiechert fields, 874
potentials, 871
light cone, 832
light, speed of, 51
linear momentum
conservation of, 511, 524
electromagnetic, 513
electromagnetic, in matter, 526
linewidth, radiative, 906
liquid drop model, 113
local field, 177
longitudinal waves
in a Drude medium, 632
in dispersive matter, 629
Lord Rayleigh, 705
Lorentz averaging, 39
Lorentz force, 29, 37, 365, 366, 456
Lorentz invariant scalar, 831
Lorentz model
for dielectric matter, 635
for magnetization, 411
for polarization, 160
wave velocities, 644
Lorentz reciprocity, 769
Lorentz tensors, 849
Lorentz transformation
of a static Coulomb field, 844
electromagnetic fields, 843
of four-vectors, 835, 961
of magnetization, 858
of plane wave fields, 845
of polarization, 858
of space-time coordinates, 834
standard configuration, 827
Lorentz–Larmor equation, 902
Lorentzian line shape, 702, 906
Lorenz gauge, 507, 537
Lorenz, L., 507, 789
macroscopic sources and fields, 44
macroscopic vs. microscopic, 38
magnetic anisotropy, 379
magnetic bacteria, 379
magnetic bottle, 377
magnetic charge
absence of physical, 48
fictitious, 415, 436, 443, 445
real, 419
magnetic diffusion, 481
magnetic dipole, 337
magnetic dipole moment
adiabatic invariance of, 376
of a conducting sphere, 432
of a current loop, 339
of a magnetized body, 411
of a permeable sphere, 422
of the proton, 419
orbital, 340
spin, 341
magnetic dipole radiation, 748
magnetic domain, 443
magnetic energy
potential, 389
total, 384
magnetic field B
axially symmetric, 357
matching condition, 42
of a current line, 308
of a current ring, 313
of a current segment, 307
of a current sheet, 309
of a current-carrying wire, 323
of a magnetic dipole, 338
of a point magnetic dipole, 343
of a solenoid, 305
of a torus winding, 311
of a uniformly magnetized sphere, 417
of magnetized matter, 412
of the Earth, 339
of the solar corona, 386
magnetic flux, 302, 388, 461
magnetic force, 301, 365
between steady currents, 34, 368
from variation of potential energy, 391
on a current sheet, 311
on a dipole, 373
on a magnetic interface, 441
on a magnetic sub-volume, 438
on an embedded magnet, 440
on an isolated body, 436
magnetic helicity, 327
magnetic Hertz vector, 569, 716
magnetic hysteresis, 443, 446
magnetic matter, 407
constitutive relation, 421
energy of, 433
linear, 421
permanent, 443
simple, 421
waves in, 584
magnetic mirror, 375
magnetic multipole expansion
for scalar potential
axial, 357
azimuthal, 351
spherical, 349
magnetic multipole, 336
magnetic permeability, 421
for a split-ring resonator, 641
frequency-dependent, 625
magnetic plasma
Appleton model for a, 636
magnetic pressure, 382
magnetic quadrupole, 356
magnetic plasma
magnetization
magnetic work, 366, 371
magnetic virial theorem, 383
magnetic torque, 301, 365
magnetic trapping, 377
magnetic vortex theorem, 383
magnetic work, 366, 371
magnetization M
as a sum of point dipoles, 413
energy to create, 434
Lorentz model for, 411
magnetic field produced by, 412
non-uniqueness of, 412
of the vacuum, 46
orbital, 408, 409
spin, 408

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>total, 410</td>
<td></td>
</tr>
<tr>
<td>magnetostatics, 301</td>
<td></td>
</tr>
<tr>
<td>history of, 34</td>
<td></td>
</tr>
<tr>
<td>magnetron, 666</td>
<td></td>
</tr>
<tr>
<td>Marconi, G., 639</td>
<td></td>
</tr>
<tr>
<td>mass renormalization, 904</td>
<td></td>
</tr>
<tr>
<td>matching conditions</td>
<td></td>
</tr>
<tr>
<td>at a moving interface, 43, 859</td>
<td></td>
</tr>
<tr>
<td>at an electric dipole layer, 100</td>
<td></td>
</tr>
<tr>
<td>for B, 42, 310</td>
<td></td>
</tr>
<tr>
<td>for D, 45, 166</td>
<td></td>
</tr>
<tr>
<td>for E, 42, 70</td>
<td></td>
</tr>
<tr>
<td>for H, 45, 420</td>
<td></td>
</tr>
<tr>
<td>for electrostatic potential, 62, 197</td>
<td></td>
</tr>
<tr>
<td>for magnetic scalar potential, 417</td>
<td></td>
</tr>
<tr>
<td>in ohmic matter, 277</td>
<td></td>
</tr>
<tr>
<td>Maxwell equations, 849</td>
<td></td>
</tr>
<tr>
<td>electrostatic, 58</td>
<td></td>
</tr>
<tr>
<td>from Hamilton’s equations, 935</td>
<td></td>
</tr>
<tr>
<td>from Lagrange’s equations, 925</td>
<td></td>
</tr>
<tr>
<td>heuristic derivation, 51</td>
<td></td>
</tr>
<tr>
<td>in matter, 43</td>
<td></td>
</tr>
<tr>
<td>in vacuum, 33</td>
<td></td>
</tr>
<tr>
<td>macroscopic vs. macroscopic, 39</td>
<td></td>
</tr>
<tr>
<td>magnetostatic, 301</td>
<td></td>
</tr>
<tr>
<td>Maxwell inequalities, 138</td>
<td></td>
</tr>
<tr>
<td>Maxwell stress tensor, 513</td>
<td></td>
</tr>
<tr>
<td>Maxwell, J.C., 33, 90, 584</td>
<td></td>
</tr>
<tr>
<td>metal cluster ionization potential, 79</td>
<td></td>
</tr>
<tr>
<td>metal surface, charge density at a, 40</td>
<td></td>
</tr>
<tr>
<td>metallic alloy, reflectivity of a, 612</td>
<td></td>
</tr>
<tr>
<td>method of images for</td>
<td></td>
</tr>
<tr>
<td>a dielectric cylinder, 249</td>
<td></td>
</tr>
<tr>
<td>a conducting cylinder, 248</td>
<td></td>
</tr>
<tr>
<td>a conducting sphere, 245, 247</td>
<td></td>
</tr>
<tr>
<td>dielectric boundaries, 240</td>
<td></td>
</tr>
<tr>
<td>magnetic matter, 428</td>
<td></td>
</tr>
<tr>
<td>multiple conducting planes, 242</td>
<td></td>
</tr>
<tr>
<td>one conducting plane, 237</td>
<td></td>
</tr>
<tr>
<td>method of inversion, 246</td>
<td></td>
</tr>
<tr>
<td>metric tensor in special relativity, 959</td>
<td></td>
</tr>
<tr>
<td>microscopic vs. macroscopic, 38</td>
<td></td>
</tr>
<tr>
<td>microstrip, 693</td>
<td></td>
</tr>
<tr>
<td>Mie scattering, 787</td>
<td></td>
</tr>
<tr>
<td>approximate, 795</td>
<td></td>
</tr>
<tr>
<td>Minkowski diagram, 832</td>
<td></td>
</tr>
<tr>
<td>Minkowski electrodynamics, 858</td>
<td></td>
</tr>
<tr>
<td>Minkowski, H., 835, 858</td>
<td></td>
</tr>
<tr>
<td>mirror, magnetic, 375</td>
<td></td>
</tr>
<tr>
<td>mixed boundary conditions, 199, 252</td>
<td></td>
</tr>
<tr>
<td>mobility, 292</td>
<td></td>
</tr>
<tr>
<td>modes</td>
<td></td>
</tr>
<tr>
<td>density of, 697</td>
<td></td>
</tr>
<tr>
<td>excitation of cavity, 703</td>
<td></td>
</tr>
<tr>
<td>for a parallel-plate transmission line, 673</td>
<td></td>
</tr>
<tr>
<td>in conducting cavities, 694</td>
<td></td>
</tr>
<tr>
<td>in conducting-tube cavities</td>
<td></td>
</tr>
<tr>
<td>TE and TM, 695</td>
<td></td>
</tr>
<tr>
<td>in conducting-tube waveguides, 678</td>
<td></td>
</tr>
<tr>
<td>in dielectric waveguides, 687</td>
<td></td>
</tr>
<tr>
<td>in spherical cavities</td>
<td></td>
</tr>
<tr>
<td>TE and TM, 696</td>
<td></td>
</tr>
<tr>
<td>of a dielectric waveguide hybrid, 692</td>
<td></td>
</tr>
<tr>
<td>of electromagnetic radiation, 692</td>
<td></td>
</tr>
<tr>
<td>moment</td>
<td></td>
</tr>
<tr>
<td>anapole, 348</td>
<td></td>
</tr>
<tr>
<td>electric dipole, 92</td>
<td></td>
</tr>
<tr>
<td>electric quadrupole, 102</td>
<td></td>
</tr>
<tr>
<td>magnetic dipole, 372</td>
<td></td>
</tr>
<tr>
<td>momentum</td>
<td></td>
</tr>
<tr>
<td>canonical, 918</td>
<td></td>
</tr>
<tr>
<td>conservation of, 511, 524, 852, 929</td>
<td></td>
</tr>
<tr>
<td>electromagnetic, 513</td>
<td></td>
</tr>
<tr>
<td>relativistic, 837</td>
<td></td>
</tr>
<tr>
<td>momentum density</td>
<td></td>
</tr>
<tr>
<td>canonical, 925</td>
<td></td>
</tr>
<tr>
<td>electromagnetic, 513</td>
<td></td>
</tr>
<tr>
<td>momentum four-vector, 837</td>
<td></td>
</tr>
<tr>
<td>momentum, hidden, 521</td>
<td></td>
</tr>
<tr>
<td>monochromatic plane waves, 543</td>
<td></td>
</tr>
<tr>
<td>monopole, magnetic, 49, 302, 337</td>
<td></td>
</tr>
<tr>
<td>motional EMP, 464</td>
<td></td>
</tr>
<tr>
<td>multipolar wave propagation in a, 604</td>
<td></td>
</tr>
<tr>
<td>multipole expansion for electrostatic potential</td>
<td></td>
</tr>
<tr>
<td>azimuthal, 112</td>
<td></td>
</tr>
<tr>
<td>spherical, 109</td>
<td></td>
</tr>
<tr>
<td>for magnetic scalar potential</td>
<td></td>
</tr>
<tr>
<td>axial, 357</td>
<td></td>
</tr>
<tr>
<td>azimuthal, 351</td>
<td></td>
</tr>
<tr>
<td>spherical, 349</td>
<td></td>
</tr>
<tr>
<td>for radiation fields</td>
<td></td>
</tr>
<tr>
<td>Cartesian, 743</td>
<td></td>
</tr>
<tr>
<td>spherical, 755</td>
<td></td>
</tr>
<tr>
<td>for vector potential</td>
<td></td>
</tr>
<tr>
<td>Cartesian, 336, 347</td>
<td></td>
</tr>
<tr>
<td>interior, 353</td>
<td></td>
</tr>
<tr>
<td>spherical, 351</td>
<td></td>
</tr>
<tr>
<td>multipole moments</td>
<td></td>
</tr>
<tr>
<td>electromagnetic, 758</td>
<td></td>
</tr>
<tr>
<td>electrostatic</td>
<td></td>
</tr>
<tr>
<td>spherical, 110, 112</td>
<td></td>
</tr>
<tr>
<td>magnetostatic azimuthal, 351</td>
<td></td>
</tr>
<tr>
<td>Cartesian, 347</td>
<td></td>
</tr>
<tr>
<td>spherical, 349</td>
<td></td>
</tr>
<tr>
<td>multipole radiation</td>
<td></td>
</tr>
<tr>
<td>Cartesian, 743</td>
<td></td>
</tr>
<tr>
<td>from atoms and nuclei, 761</td>
<td></td>
</tr>
<tr>
<td>spherical, 755</td>
<td></td>
</tr>
<tr>
<td>multipoles</td>
<td></td>
</tr>
<tr>
<td>electric, 90</td>
<td></td>
</tr>
<tr>
<td>magnetic, 336</td>
<td></td>
</tr>
<tr>
<td>mutual inductance, 396</td>
<td></td>
</tr>
<tr>
<td>near zone, 728</td>
<td></td>
</tr>
<tr>
<td>near-field optics, 810</td>
<td></td>
</tr>
<tr>
<td>negative group velocity, 644</td>
<td></td>
</tr>
<tr>
<td>index matter, 590</td>
<td></td>
</tr>
<tr>
<td>split-ring model for, 640</td>
<td></td>
</tr>
<tr>
<td>negative refraction, 590</td>
<td></td>
</tr>
<tr>
<td>Nernst-Planck equation, 292</td>
<td></td>
</tr>
<tr>
<td>network circuits, 490</td>
<td></td>
</tr>
<tr>
<td>Neumann boundary conditions, 199, 278</td>
<td></td>
</tr>
<tr>
<td>Neumann Green function, 252</td>
<td></td>
</tr>
<tr>
<td>Noether’s theorem, 928</td>
<td></td>
</tr>
<tr>
<td>non-uniform plane wave, 598, 672</td>
<td></td>
</tr>
<tr>
<td>TEM wave, 668</td>
<td></td>
</tr>
<tr>
<td>normal dispersion, 635</td>
<td></td>
</tr>
<tr>
<td>nuclear quadrupole moments, 105</td>
<td></td>
</tr>
<tr>
<td>Ohm’s law, 36, 275, 340, 473, 510, 607</td>
<td></td>
</tr>
<tr>
<td>in a moving medium, 859</td>
<td></td>
</tr>
<tr>
<td>Onsager, L., 177, 212</td>
<td></td>
</tr>
<tr>
<td>optical fiber, 687</td>
<td></td>
</tr>
<tr>
<td>optical theorem, 794</td>
<td></td>
</tr>
<tr>
<td>optical tweezers, 574</td>
<td></td>
</tr>
<tr>
<td>orbital magnetization, 409</td>
<td></td>
</tr>
<tr>
<td>orbital, magnetic moment, 340</td>
<td></td>
</tr>
<tr>
<td>ordinary ray, 615</td>
<td></td>
</tr>
<tr>
<td>orthogonality of Bessel functions, 217, 956</td>
<td></td>
</tr>
<tr>
<td>of cavity modes, 694</td>
<td></td>
</tr>
<tr>
<td>of complex exponentials, 217</td>
<td></td>
</tr>
<tr>
<td>of complex vectors, 548</td>
<td></td>
</tr>
<tr>
<td>of Legendre polynomials, 107, 953</td>
<td></td>
</tr>
<tr>
<td>of sinuoids, 204</td>
<td></td>
</tr>
<tr>
<td>of spherical Bessel functions, 958</td>
<td></td>
</tr>
<tr>
<td>of spherical harmonics, 108, 213, 955</td>
<td></td>
</tr>
<tr>
<td>of waveguide modes, 678</td>
<td></td>
</tr>
<tr>
<td>orthonormal functions, 202</td>
<td></td>
</tr>
<tr>
<td>p-polarization, 590</td>
<td></td>
</tr>
<tr>
<td>parallel-plate capacitor, 141</td>
<td></td>
</tr>
<tr>
<td>transmission line, 673</td>
<td></td>
</tr>
<tr>
<td>paramagnet, 407, 422</td>
<td></td>
</tr>
<tr>
<td>paraxial approximation, 559, 561</td>
<td></td>
</tr>
<tr>
<td>paraxial beam, angular momentum of, 563</td>
<td></td>
</tr>
<tr>
<td>paraxial waves, 562</td>
<td></td>
</tr>
<tr>
<td>parity, 94, 348, 502, 762</td>
<td></td>
</tr>
<tr>
<td>Paseval’s theorem, 16</td>
<td></td>
</tr>
<tr>
<td>Pauli, W., 455, 835</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Peierls, R., 29
perfect absorber, 796
conductor, 126, 431
diamagnet, 430
ferromagnet, 430
lens, 590
permanent magnet matter, 443
permeability, 421
of a ferromagnet, 430
of a perfect conductor, 431
of a superconductor, 430
permittivity, 167
complex, 608
phase of a wave, 541
phase velocity
and charged particle acceleration, 686
and Cherenkov radiation, 906
in a conducting-tube waveguide, 679
in a good conductor, 610
in a magnetized plasma, 639
in Lorentz matter, 644
in negative-index matter, 590
of a plane wave
in matter, 586
in vacuum, 541
of an Alfvén wave, 587
of an evanescent wave, 598
physical optics approximation, 792
pickup coil, 465
pinch effect, 371
Planck distribution, 698
Planck, M., 501
plane of incidence, 589
plane wave expansions, 958
plane waves
angular spectrum of, 558
evanescent, 558, 598
in anisotropic matter, 613
in conducting matter, 607
in simple matter, 584
in special relativity, 845
in vacuum, 539
mechanical properties of, 542
monochromatic, 543
non-uniform, 672
standing, 539
transverse, 539
plasma
frequency, 631
oscillation, 633
waves in a magnetized, 636
Poincaré sphere, 550
point electric dipole, 95
point magnetic dipole, 343
Poisson’s equation, 61, 236
Green function for, 250
particular solution, 236
uniqueness of solutions, 199
vector, 321
Poisson’s formula, 162
Poisson-Boltzmann equation, 262
polar symmetry, potential problems with, 218
polar vector, 21
polarizability, 129, 175
polarization
by reflection, 594
by Thomson/Rayleigh scattering, 779
circular, 547
ellipse, 545
elliptical, 549
linear, 546
of an electromagnetic wave, 545
of synchrotron radiation, 893
of the cosmic microwave background, 545, 781
polarization P
as a sum of point dipoles, 164
electric field produced by, 162
energy to create, 181
Lorentz model of, 160
modern theory of, 160
of a conductor, 126
of a dielectric, 158
of the vacuum, 46
polarization charge, 159
at an interface, 170
density, 118
polarization current, 458
in ice, 459
ponderomotive force, 573
potential
electromagnetic, 503
electrostatic, 60
complex, 221
matching condition for, 62
multipole expansion, 90
near a sharp corner or edge, 219
of a charged line segment, 65
of a charged ring, 211
of a conducting sphere, 126
of a current source, 287
of a dipole layer, 99
of a line dipole, 260
of an electric dipole, 92
of an electric quadrupole, 102
of polarized matter, 162
four-vector, 842
magnetic scalar, 312
of a current loop, 314
of a magnetic dipole, 330
momentum, 515
scalar
Coulomb gauge, 505
in special relativity, 842
Lorenz gauge, 724
of a point charge in arbitrary motion, 872
of a point charge in uniform motion, 716
of a time-dependent electric dipole, 727
vector, 320
Coulomb gauge, 506
for radiation, 734
gauge freedom, 504
in special relativity, 842
Lorenz gauge, 724
of a charge in uniform motion, 716
of a current ring, 324
of a current-carrying wire, 322, 323
of a magnetic dipole, 338
of a magnetic dipole layer, 345
of a point charge in arbitrary motion, 872
of a point magnetic monopole, 344
time of emission, 533
time-dependence, 317
time of emission, 533
of an electric dipole, 97
time-dependence, 317
of magnetic dipole, 377
time of emission, 533
potential energy and Green’s reciprocity, 75
in an ion channel, 244
electrostatic, 74
force from variation of, 74, 391
landscape in matter, 126, 158
magnetostatic, 389
of a magnetic dipole, 377
of an electric dipole, 97
of magnetic matter, 453
potential theory for a simple magnet, 426
for magnetic matter, 416
for simple dielectrics, 174
ohmic matter, 276
Poisson’s equation, 236
uniqueness of solutions, 199
power dissipated
by a conducting-tube waveguide, 684
by a resonant cavity, 701
by an ohmic medium, 474
in circuit theory, 486
power radiated by a point particle, relativistic, 884
by a slowly moving point charge, 736
INDEX

by a specified current source, 737
by a wire antenna, 738
by an oscillating electric dipole, 746
by an oscillating electric multipole, 760
by an oscillating electric quadrupole, 754
by an oscillating magnetic dipole, 750
by at time-harmonic solenoid, 718
by particle accelerators, 885
in the frequency domain, 886
in the general case, 730
power transported
by a conducting-tube waveguide, 682
Poynting vector
and the definition of radiation, 730
at an interface, 593
field lines
for a resistive wire, 510
for a plane wave, 544
in a conducting-tube waveguide, 682
in matter, 523
in negative-index matter, 590
in vacuum, 508
of an evanescent wave, 598
uniqueness, 511
Poynting’s theorem, 507
in matter, 523
in special relativity, 854
time-averaged, 700
precession, Larmor, 381
precession, Thomas, 854
pressure, magnetic, 382
pressure, radiation, 599, 847
principal value integral, 13
proper time, 833
pseudovector, 21
pulsar, 743
Parcell, E.M, 158
Q, quality factor of
a dielectric resonator, 704
a lossy medium, 588
a resonant cavity, 702
a resonant circuit, 489
quadrupole mass spectrometer, 469
quadrupole moment tensor
of an ellipsoid, 106
of nuclei, 105
primitive, 91, 102
traceless, 103
quadrupole, electric, 102
force and torque on, 104
quantum electrodynamics, 46
quantum Hall effect, 389
quark confinement, classical model for, 180
quark-gluon plasma, 830
quasi-electrostatics
in poor conductors, 473
in vacuum, 468
quasi-magnetostatics
in good conductors, 475
in vacuum, 471
quasi-monochromatic fields, 628
quotient theorem, 849
Rabi, I, 336
radiation, 714
angular distribution of, 730
birth of, 731
blackbody, 698
damping, 899
definition of, 730
from
a current sheet, 725
a magnetic dipole, 748
a point charge in circular motion, 883
a relativistic source, 880
a slotted sphere, 756
a slowly moving charge, 736
a specified current density, 737
a time-harmonic solenoid, 718
a wire antenna, 738
an antenna array, 742
an electric dipole, 744
an electric multipole, 759
an electric quadrupole, 752
atoms and nuclei, 761
cyclotron motion, 882
synchrotron motion, 882, 891
the cosmic microwave background, 699
Hertz analysis of, 731
in matter, 762
in the frequency domain, 736, 886
in the time domain, 733, 880
multipole
Cartesian, 743
spherical, 755
of angular momentum, 751, 760
pressure, 599, 847
reaction, 795, 899
resistance, 739
vector, 743
zone
summary of results, 734
radiation condition, Sommerfeld, 724
radiative linewidth, 906
Rayleigh criterion, 806
Rayleigh distance, 560
Rayleigh scattering
two dimensions, 782
two dimensions, 786
Rayleigh, Lord, 782
Rayleigh Jeans law, 698
reciprocity
electric, 75
Lorentz, 769
magnetic, 387
reconnection
electric field line, 732
magnetic field line, 325
rectangular-tube waveguides, 680
red sun, Rayleigh explanation of, 782
reference frame, 823
reflection
amplitude, 593
coefficient, 593
from a good conductor, 611
from a moving mirror, 846
from a planar boundary, 588
of radio waves by the ionosphere, 639
polarization by, 594
total internal, 595
reflectivity, 632
of a metallic alloy, 612
of aluminum, 633
of seawater, 612
refraction
from a planar boundary, 588
index of, 762
into a good conductor, 611
of magnetic field lines, 425
refrigerator magnet, 445
relativistic covariance, 834, 848
relativistic invariance of electric charge, 831
proper time, 833
radiated power, 884
the action, 919
the four-vector scalar product, 835
the interval, 831
the phase of a plane wave, 846
the speed of light, 831
the wave operator, 840
relativistic transformation of a static Coulomb field, 844
electromagnetic fields, 843
four-vectors, 961
magnetization, 858
plane wave fields, 845
polarization, 858
space-time coordinates, 827, 834, 835
relativity of simultaneity, 825
relativity, special, 653, 822
remanent magnetization, 443
resistance
contact, 279
electrical, 277
four-point probe, 288
resistivity, 278
resonant cavities, 666
chaos in, 699
closed tube, 695
conducting, 693
density of modes, 697
energy exchange, 700
Q-factor of, 702
spherical, 696
response functions
analyticity of, 652
causal, 624, 649
resting potential of a cell, 291
retardation, 714, 719
retarded Green function, 722
retarded potentials, 724
retarded time, 714
right-hand rule, 10, 36, 97, 307
Ritz, W., 723
runaway solutions, 903
Rutherford, Ernest, 480
s-polarization, 590
scalar potential
Coulomb gauge, 505
electrostatic, 60
complex, 221
matching condition for, 62
multipole expansion, 90
near a sharp corner or edge, 219
of a charged line segment, 65
of a charged ring, 211
of a conducting sphere, 126
of a current source, 287
of a dipole layer, 99
of a line dipole, 260
of an electric dipole, 92
of an electric quadrupole, 102
of polarized matter, 162
in special relativity, 842
Lorenz gauge, 724
magnetic, 312
and the method of images, 428
multi-valued nature of, 318
multipole expansion of, 349
of a current loop, 314
of magnetized matter, 415
of a point charge in arbitrary
motion, 872
of a point charge in uniform
motion, 716
of a time-dependent electric
dipole, 727
scalar product of two four-vectors,
835
scattering, 775
amplitude, 777
and the blue sky, 782
and the red sun, 782
cross section
differential (2D), 785
differential (3D), 776
total, 777
form factor, 780
from a conducting cylinder, 783
from a dielectric sphere, 787
long wavelength, 777, 782
Mie, 787
approximate, 795
plane, 778
Rayleigh, 782
Thomson, 777
wave vector, 780
x-ray, 780
Schott’s formulae, 726
Schumann resonances, 666
Schwarzschild, K., 927
screening length, 149, 291, 657
dimensional, 133
seawater, reflectivity of, 612
self-inductance, 395
separation of variables
Helmholtz equation, 567
Laplace equation, 201
azimuthal symmetry, 209
Cartesian symmetry, 203
cylindrical symmetry, 215
polar coordinates, 218
spherical symmetry, 212
shielding
electrostatic, 133
magnetic AC, 480
magnetic DC, 428
SI units, 50
sign function, 14
silicon dioxide, index of refraction
of, 637
silicon, dielectric function of, 636
simple dielectric matter
defined, 167
waves in, 584
simple magnetic matter
defined, 421
waves in, 584
singular behavior
of E at a sharp corner or edge, 219
of a point electric dipole, 95
of a point magnetic dipole, 343
skin depth, 609
skin effect, 477
Stanford linear accelerator, 686
Smoluchowski, M., 782
Smythe’s diffraction formula, 803
Snell’s law, 589
solenoid, 305
time-dependent, 718
toroidal, 312, 349, 397
solid angle, 71, 319
Sommerfeld radiation condition, 724
Sommerfeld, A., 58, 653
space charge, 274
space inversion, 18, 21, 52, 502, 690
space-time, 827
spatial dispersion, 656
special relativity, 653, 822
speed of light, 51
spherical
Bessel functions, 957
cavity resonator, 696
coordinates, 3
harmonics, 108, 213, 954
multiple radiation, 755
symmetry, potential problems
with, 212
waves, 565
spin magnetic moment, 340
spin magnetization, 408
split-ring model for negative-index
matter, 640
splitting method for Dirichlet Green
function, 258
spontaneous emission, 699
standard configuration, 823
standing wave, 539, 634, 672, 695,
737, 798
steady-state condition, 272, 284,
302, 337, 439, 475
stellar aberration, 846
step function, 13
Stokes parameters, 549
relations, 603
theorem, 10
Stratton-Chu formulae, 811
stress tensor
electric, 81
electromagnetic (Maxwell), 513
magnetic, 381
stress-energy tensor, 853
strong focusing, 356
structural dispersion, 674, 679
sum rules, 655
superconductor
compared to a perfect conductor,
407, 432
perfect diamagnetism, 432
permeability of a, 430
zero resistance, 388
surface charge density
defined, 30
of a perfect conductor, 130
surface current density
defined, 31
of a perfect conductor, 311
surface wave, 596
susceptibility
electric, 167
magnetic, 421
symmetry
continuous, 503
discrete, 502
dual, 503, 566
in electromagnetism, 501
symmetry arguments
to find A, 322
to find B, 307
synchrotron radiation, 882, 891
frequency spectrum, 895
polarization, 893
pulse shape, 893
transition from cyclotron radiation,
894
Système International (SI) units, 50
TE (transverse electric) modes
in conducting-tube cavities, 695
in spherical cavities, 696
TE (transverse electric) waves
guided by a transmission line, 673
in a circular waveguide, 681
in a conducting-tube waveguide,
676
in a dielectric waveguide, 690
in a rectangular waveguide, 680
in an optical fiber, 689
in Fresnel theory, 590
in vacuum, 566
telegraph equations, 669
TEM (transverse electromagnetic)
waves, 668
absence in hollow-tube
waveguides, 677
guided by a coaxial transmission
line, 667
non-uniform, 668
tensor
contraction theorem, 849
decomposition of a second rank, 338
demagnetization, 418
dual, 851
electric stress, 81
electromagnetic field strength, 850
electromagnetic stress-energy, 853
Lorentz, transformation properties,
849
magnetic stress, 381
Maxwell stress, 513
metric, in special relativity, 959
moment of inertia, 379
quadrupole moment
primitive, 91, 102
traceless, 103
quotient theorem, 849
rotational, definition, 20
torque density, 854
theorem
Ampère’s, 345
Cauchy’s, 652
center of energy, 520
convolution, 16
divergence, 9
Earnshaw’s, 63
equipartition, 698
extension, 762
Floquet’s, 687
hairy ball, 568
Helmholtz, 22
Larmor’s, 367
magnetic virial, 383
Noether’s, 928
optical, 794
Parseval’s, 16
Poynting’s, 507
Stokes, 10
Thomas’s (electrostatics), 128
Thomas’s (magnetostatics), 303
time-averaging, 17
uniqueness, 199, 509
Whittaker’s, 539
Thomas precession, 834
Thomas-Fermi, 291
Thomson scattering, 777
Thomson’s formula, 488
jumping ring, 492
problem, 78
theorem
of electrostatics, 128
of magnetostatics, 303
Thomson, W. (Lord Kelvin), 35, 301,
671
’t Hooft, G., 835
time dilation, 329
time reversal, 502
time-averaging theorem, 17
TM (transverse magnetic) modes
in conducting-tube cavities, 695
in spherical cavities, 696
TM (transverse magnetic) waves
in a circular waveguide, 681
in a conducting-tube waveguide,
676
in a rectangular waveguide, 680
in an optical fiber, 689
in Fresnel theory, 590
in vacuum, 566
topology and the magnetic scalar
potential, 317
topology of magnetic field lines, 325
toroidal solenoid, 312, 349, 397
torque
electric, 58
on a dipole, 97
on a quadrupole, 104
Lorentz tensor of, 851
magnetic, 301, 365
on a dipole, 378
mechanical, 517
total energy
electrostatic, 76
magnetostatic, 384
of a plane wave, 544
of a relativistic particle, 837
of a wave packet, 552
do dielectric matter, 179
do magnetic matter, 433
do the electromagnetic field, 508
total internal reflection, 595, 666, 688
transformation
Galilean, 824
Lorentz
of a static Coulomb field, 844
do electromagnetic fields, 843
do four-vectors, 835, 961
do magnetization, 858
do plane wave fields, 845
do polarization, 858
do space-time coordinates, 827,
834
standard configuration, 827
transformation EMF, 464
transmission amplitude, 594
transmission coefficient, 594
transmission line, 667
coaxial, 667
parallel-plate, 673
TEM waves guided by a, 667
transverse electric (TE) modes
in conducting-tube cavities, 695
in spherical cavities, 696
transverse electric (TE) waves
guided by a transmission line, 673
in a circular waveguide, 681
in a conducting-tube waveguide,
676
in a dielectric waveguide, 690
in a rectangular waveguide, 680
in an optical fiber, 689
in Fresnel theory, 590
in vacuum, 566
topology and the magnetic scalar
potential, 317
topology of magnetic field lines, 325
toroidal solenoid, 312, 349, 397
torque
electric, 58
on a dipole, 97
on a quadrupole, 104
Lorentz tensor of, 851
magnetic, 301, 365
on a dipole, 378
mechanical, 517
total energy
electrostatic, 76
magnetostatic, 384
of a plane wave, 544
of a relativistic particle, 837
of a wave packet, 552
do dielectric matter, 179
do magnetic matter, 433
do the electromagnetic field, 508
total internal reflection, 595, 666, 688
transformation
Galilean, 824
Lorentz
of a static Coulomb field, 844
do electromagnetic fields, 843
do four-vectors, 835, 961
do magnetization, 858
do plane wave fields, 845
do polarization, 858
do space-time coordinates, 827,
834
standard configuration, 827
transformation EMF, 464
transmission amplitude, 594
transmission coefficient, 594
transmission line, 667
coaxial, 667
parallel-plate, 673
TEM waves guided by a, 667
transverse electric (TE) modes
in conducting-tube cavities, 695
in spherical cavities, 696
transverse electric (TE) waves
guided by a transmission line, 673
in a circular waveguide, 681
in a conducting-tube waveguide,
676
in a dielectric waveguide, 690
in a rectangular waveguide, 680
in an optical fiber, 689
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>in Fresnel theory, 590</td>
</tr>
<tr>
<td>in vacuum, 566</td>
</tr>
<tr>
<td>transverse magnetic (TM) modes in conducting-tube cavities, 695</td>
</tr>
<tr>
<td>in spherical cavities, 696</td>
</tr>
<tr>
<td>transverse magnetic (TM) waves in a circular waveguide, 681</td>
</tr>
<tr>
<td>in a conducting-tube waveguide, 676</td>
</tr>
<tr>
<td>in a rectangular waveguide, 680</td>
</tr>
<tr>
<td>in an optical fiber, 689</td>
</tr>
<tr>
<td>in Fresnel theory, 590</td>
</tr>
<tr>
<td>in vacuum, 566</td>
</tr>
<tr>
<td>in a Drude medium, 632</td>
</tr>
<tr>
<td>in a magnetized plasma, 638</td>
</tr>
<tr>
<td>in dispersive matter, 629</td>
</tr>
<tr>
<td>in simple matter, 584</td>
</tr>
<tr>
<td>in vacuum, 539</td>
</tr>
<tr>
<td>triode, 140</td>
</tr>
<tr>
<td>two-dimensional potential theory problems, 221</td>
</tr>
<tr>
<td>uniaxial crystal, 613</td>
</tr>
<tr>
<td>waves in a, 615</td>
</tr>
<tr>
<td>uniqueness theorem for time-dependent fields, 509</td>
</tr>
<tr>
<td>Laplace's equation, 199</td>
</tr>
<tr>
<td>Poisson's equation, 199</td>
</tr>
<tr>
<td>Unisphere, 213</td>
</tr>
<tr>
<td>units conversion, 950</td>
</tr>
<tr>
<td>Gaussian, 949</td>
</tr>
<tr>
<td>Système International (SI), 50</td>
</tr>
<tr>
<td>vacuum diode, 273</td>
</tr>
<tr>
<td>vacuum polarization, 46</td>
</tr>
<tr>
<td>vacuum tube, 140</td>
</tr>
<tr>
<td>variational principle electrostatic, 226</td>
</tr>
<tr>
<td>for the action, 916</td>
</tr>
<tr>
<td>vector Poisson equation, 321</td>
</tr>
<tr>
<td>vector potential, 320</td>
</tr>
<tr>
<td>Coulomb gauge, 506</td>
</tr>
<tr>
<td>for radiation, 734</td>
</tr>
<tr>
<td>gauge freedom, 504</td>
</tr>
<tr>
<td>in special relativity, 842</td>
</tr>
<tr>
<td>Lorenz gauge, 724</td>
</tr>
<tr>
<td>multipole expansion Cartesian, 336, 347</td>
</tr>
<tr>
<td>interior, 353</td>
</tr>
<tr>
<td>spherical, 351</td>
</tr>
<tr>
<td>of a charge in uniform motion, 716</td>
</tr>
<tr>
<td>of a current line, 322</td>
</tr>
<tr>
<td>of a current ring, 324</td>
</tr>
<tr>
<td>of a current-carrying wire, 322, 323</td>
</tr>
<tr>
<td>of a magnetic dipole, 338</td>
</tr>
<tr>
<td>of a magnetic dipole layer, 345</td>
</tr>
<tr>
<td>of a point charge in arbitrary motion, 872</td>
</tr>
<tr>
<td>of a point magnetic monopole, 344</td>
</tr>
<tr>
<td>of a time-dependent electric dipole, 727</td>
</tr>
<tr>
<td>of magnetized matter, 412</td>
</tr>
<tr>
<td>physical significance, 514</td>
</tr>
<tr>
<td>velocity energy in a conducting-tube waveguide, 682</td>
</tr>
<tr>
<td>in Lorentz matter, 644</td>
</tr>
<tr>
<td>of a plane wave in matter, 544 group and the index of refraction, 643 approximation, 642</td>
</tr>
<tr>
<td>in a conducting-tube waveguide, 679</td>
</tr>
<tr>
<td>in Drude matter, 643</td>
</tr>
<tr>
<td>in Lorentz matter, 644</td>
</tr>
<tr>
<td>negative, 644</td>
</tr>
<tr>
<td>of a wave packet, 555</td>
</tr>
<tr>
<td>phase and Cherenkov radiation, 906</td>
</tr>
<tr>
<td>in a conducting-tube waveguide, 679</td>
</tr>
<tr>
<td>in a good conductor, 610</td>
</tr>
<tr>
<td>in a magnetized plasma, 639</td>
</tr>
<tr>
<td>in charged particle acceleration, 686</td>
</tr>
<tr>
<td>in Lorentz matter, 644</td>
</tr>
<tr>
<td>in negative index matter, 590</td>
</tr>
<tr>
<td>of an Alfvén wave, 587</td>
</tr>
<tr>
<td>of an evanescent wave, 598</td>
</tr>
<tr>
<td>velocity field of a moving charge, 875</td>
</tr>
<tr>
<td>velocity four-vector, 836</td>
</tr>
<tr>
<td>Veltman, M., 835</td>
</tr>
<tr>
<td>Volta, A., 31, 272</td>
</tr>
<tr>
<td>voltage, 283</td>
</tr>
<tr>
<td>voltaic cell, 283</td>
</tr>
<tr>
<td>waist, Gaussian beam, 560</td>
</tr>
<tr>
<td>wave equation covariant form of, 840</td>
</tr>
<tr>
<td>for E and B, 537</td>
</tr>
<tr>
<td>for the electric Hertz vector, 570</td>
</tr>
<tr>
<td>for the electromagnetic potentials, 537</td>
</tr>
<tr>
<td>for the magnetic Hertz vector, 569</td>
</tr>
<tr>
<td>Green function for the, 720</td>
</tr>
<tr>
<td>inhomogeneous, 715, 720</td>
</tr>
<tr>
<td>wave impedance, 586</td>
</tr>
<tr>
<td>wave normal, 613</td>
</tr>
<tr>
<td>wave packet consistency with special relativity, 653</td>
</tr>
<tr>
<td>dispersion relation, 555</td>
</tr>
<tr>
<td>envelope, 556</td>
</tr>
<tr>
<td>Gaussian, 554, 646</td>
</tr>
<tr>
<td>in dispersive matter, 641</td>
</tr>
<tr>
<td>particle-like properties of a, 855 scalar, 553</td>
</tr>
<tr>
<td>symmetry, 552</td>
</tr>
<tr>
<td>wave vector, 540</td>
</tr>
<tr>
<td>waveguide absence of TEM waves, 677</td>
</tr>
<tr>
<td>boundary conditions for, 677</td>
</tr>
<tr>
<td>conducting tube, 675</td>
</tr>
<tr>
<td>cutoff in a, 674</td>
</tr>
<tr>
<td>dielectric, 687</td>
</tr>
<tr>
<td>disk-loaded, 686</td>
</tr>
<tr>
<td>energy loss in, 684</td>
</tr>
<tr>
<td>energy velocity in, 682</td>
</tr>
<tr>
<td>general mode properties, 678</td>
</tr>
<tr>
<td>particle acceleration in, 686</td>
</tr>
<tr>
<td>structural dispersion in, 679</td>
</tr>
<tr>
<td>TE and TM waves in, 676</td>
</tr>
<tr>
<td>waves Alfvén, 587</td>
</tr>
<tr>
<td>beam-like, 558</td>
</tr>
<tr>
<td>confined by a cavity resonator, 693</td>
</tr>
<tr>
<td>a dielectric resonator, 704</td>
</tr>
<tr>
<td>guided by a transmission line, 667</td>
</tr>
<tr>
<td>conducting tubes, 675</td>
</tr>
<tr>
<td>planar conductors, 672</td>
</tr>
<tr>
<td>in a Drude medium, 632</td>
</tr>
<tr>
<td>in a magnetized plasma, 638</td>
</tr>
<tr>
<td>in a multilayer, 604</td>
</tr>
<tr>
<td>in anisotropic matter, 613</td>
</tr>
<tr>
<td>in dispersive matter, 624</td>
</tr>
<tr>
<td>in simple conducting matter, 607</td>
</tr>
<tr>
<td>in simple matter, 584</td>
</tr>
<tr>
<td>in vacuum, 536</td>
</tr>
<tr>
<td>interfacial, 596</td>
</tr>
<tr>
<td>longitudinal, 629</td>
</tr>
<tr>
<td>partially polarized, 551</td>
</tr>
<tr>
<td>plane, 539</td>
</tr>
<tr>
<td>polarization of, 545</td>
</tr>
<tr>
<td>slow, 686</td>
</tr>
<tr>
<td>spherical, 565</td>
</tr>
<tr>
<td>surface, 596</td>
</tr>
<tr>
<td>TE (transverse electric) guided by a transmission line, 673</td>
</tr>
<tr>
<td>in a circular waveguide, 681</td>
</tr>
<tr>
<td>in a conducting-tube waveguide, 676</td>
</tr>
<tr>
<td>in a dielectric waveguide, 690</td>
</tr>
<tr>
<td>in a rectangular waveguide, 680</td>
</tr>
<tr>
<td>in an optical fiber, 689</td>
</tr>
</tbody>
</table>
INDEX

in Fresnel theory, 590
in vacuum, 566
TEM (transverse electromagnetic), 668
TM (transverse magnetic)
in a circular waveguide, 681
in a conducting-tube waveguide, 676
in a rectangular waveguide, 680
in an optical fiber, 689
in Fresnel theory, 590
in vacuum, 566
transverse
in dispersive matter, 629
in simple matter, 584
in vacuum, 539
unpolarized, 551
whispering gallery modes, 705
whistlers, 647
Whittaker’s theorem, 539, 570
Wigner, E., 1, 505
world line, 833
Wronskian
Bessel functions, 956
modified Bessel functions, 257, 957
spherical Bessel functions, 957
x-ray scattering, 780
Zeeman effect, 747