Modern Electrodynamics

An engaging writing style and a strong focus on the physics make this comprehensive, graduate-level textbook unique among existing classical electromagnetism textbooks.

Charged particles in vacuum and the electrodynamics of continuous media are given equal attention in discussions of electrostatics, magnetostatics, quasistatics, conservation laws, wave propagation, radiation, scattering, special relativity, and field theory. Extensive use of qualitative arguments similar to those used by working physicists makes Modern Electrodynamics a must-have for every student of this subject.

In 24 chapters, the textbook covers many more topics than can be presented in a typical two-semester course, making it easy for instructors to tailor courses to their specific needs. Close to 120 worked examples and 80 applications boxes help the reader build physical intuition and develop technical skill. Nearly 600 end-of-chapter homework problems encourage students to engage actively with the material. A solutions manual is available for instructors at www.cambridge.org/Zangwill.

Andrew Zangwill is a Professor of Physics at the Georgia Institute of Technology and a Fellow of the American Physical Society. He is the author of the popular monograph Physics at Surfaces (Cambridge University Press, 1988).
There are more things in heaven & earth connected with electromagnetism than are yet dreamt of in philosophy.

Joseph Henry, letter to Lewis C. Beck (1827)

The search for reason ends at the shore of the known; on the immense expanse beyond it only the ineffable can glide.

Abraham Joshua Heschel, Man is Not Alone (1951)

Why repeat all this? Because there are new generations born every day. Because there are great ideas developed in the history of man, and these ideas do not last unless they are passed purposely and clearly from generation to generation.

Richard Feynman, The Meaning of It All (1963)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Applications</td>
<td>xv</td>
</tr>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
<tr>
<td>1 Mathematical Preliminaries</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Vectors</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Derivatives</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Integrals</td>
<td>9</td>
</tr>
<tr>
<td>1.5 Generalized Functions</td>
<td>11</td>
</tr>
<tr>
<td>1.6 Fourier Analysis</td>
<td>15</td>
</tr>
<tr>
<td>1.7 Orthogonal Transformations</td>
<td>18</td>
</tr>
<tr>
<td>1.8 Cartesian Tensors</td>
<td>20</td>
</tr>
<tr>
<td>1.9 The Helmholtz Theorem</td>
<td>22</td>
</tr>
<tr>
<td>1.10 Lagrange Multipliers</td>
<td>24</td>
</tr>
<tr>
<td>Sources, References, and Additional Reading</td>
<td>24</td>
</tr>
<tr>
<td>Problems</td>
<td>25</td>
</tr>
<tr>
<td>2 The Maxwell Equations</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>29</td>
</tr>
<tr>
<td>2.2 The Maxwell Equations in Vacuum</td>
<td>33</td>
</tr>
<tr>
<td>2.3 Microscopic vs. Macroscopic</td>
<td>38</td>
</tr>
<tr>
<td>2.4 The Maxwell Equations in Matter</td>
<td>43</td>
</tr>
<tr>
<td>2.5 Quantum Limits and New Physics</td>
<td>46</td>
</tr>
<tr>
<td>2.6 SI Units</td>
<td>50</td>
</tr>
<tr>
<td>2.7 A Heuristic Derivation</td>
<td>51</td>
</tr>
<tr>
<td>Sources, References, and Additional Reading</td>
<td>53</td>
</tr>
<tr>
<td>Problems</td>
<td>55</td>
</tr>
<tr>
<td>3 Electrostatics</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>58</td>
</tr>
<tr>
<td>3.2 Coulomb’s Law</td>
<td>59</td>
</tr>
<tr>
<td>3.3 The Scalar Potential</td>
<td>60</td>
</tr>
<tr>
<td>3.4 Gauss’ Law and Solid Angle</td>
<td>68</td>
</tr>
<tr>
<td>3.5 Electrostatic Potential Energy</td>
<td>74</td>
</tr>
<tr>
<td>3.6 Electrostatic Total Energy</td>
<td>76</td>
</tr>
<tr>
<td>3.7 The Electric Stress Tensor</td>
<td>81</td>
</tr>
<tr>
<td>Sources, References, and Additional Reading</td>
<td>84</td>
</tr>
<tr>
<td>Problems</td>
<td>85</td>
</tr>
</tbody>
</table>
CONTENTS

4 Electric Multipoles

4.1 Introduction 90
4.2 The Electric Dipole 92
4.3 Electric Dipole Layers 98
4.4 The Electric Quadrupole 102
4.5 Spherical Mathematics 106
4.6 Spherical and Azimuthal Multipoles 109
4.7 Primitive and Traceless Multipole Moments 116

Sources, References, and Additional Reading
Problems 119
121

5 Conducting Matter

5.1 Introduction 126
5.2 Electrostatic Induction 126
5.3 Screening and Shielding 133
5.4 Capacitance 134
5.5 The Energy of a System of Conductors 142
5.6 Forces on Conductors 143
5.7 Real Conductors 149

Sources, References, and Additional Reading
Problems 151
152

6 Dielectric Matter

6.1 Introduction 158
6.2 Polarization 158
6.3 The Field Produced by Polarized Matter 162
6.4 The Total Electric Field 165
6.5 Simple Dielectric Matter 167
6.6 The Physics of the Dielectric Constant 175
6.7 The Energy of Dielectric Matter 178
6.8 Forces on Dielectric Matter 184

Sources, References, and Additional Reading
Problems 191
193

7 Laplace’s Equation

7.1 Introduction 197
7.2 Potential Theory 198
7.3 Uniqueness 199
7.4 Separation of Variables 201
7.5 Cartesian Symmetry 203
7.6 Azimuthal Symmetry 209
7.7 Spherical Symmetry 212
7.8 Cylindrical Symmetry 215
7.9 Polar Coordinates 218
7.10 The Complex Potential 221
7.11 A Variational Principle 226

Sources, References, and Additional Reading
Problems 228
229
CONTENTS

8 Poisson's Equation 236
8.1 Introduction 236
8.2 The Key Idea: Superposition 236
8.3 The Method of Images 237
8.4 The Green Function Method 250
8.5 The Dirichlet Green Function 252
8.6 The Complex Logarithm Potential 260
8.7 The Poisson-Boltzmann Equation 262

Sources, References, and Additional Reading 264
Problems 265

9 Steady Current 272
9.1 Introduction 272
9.2 Current in Vacuum 273
9.3 Current in Matter 275
9.4 Potential Theory for Ohmic Matter 276
9.5 Electrical Resistance 277
9.6 Joule Heating 280
9.7 Electromotive Force 282
9.8 Current Sources 287
9.9 Diffusion Current: Fick's Law 291

Sources, References, and Additional Reading 293
Problems 294

10 Magnetostatics 301
10.1 Introduction 301
10.2 The Law of Biot and Savart 304
10.3 Ampère's Law 307
10.4 The Magnetic Scalar Potential 312
10.5 The Vector Potential 320
10.6 The Topology of Magnetic Field Lines 325

Sources, References, and Additional Reading 328
Problems 329

11 Magnetic Multipoles 336
11.1 Introduction 336
11.2 The Magnetic Dipole 337
11.3 Magnetic Dipole Layers 345
11.4 Exterior Multipoles 346
11.5 Interior Multipoles 353
11.6 Axially Symmetric Magnetic Fields 357

Sources, References, and Additional Reading 359
Problems 361

12 Magnetic Force and Energy 365
12.1 Introduction 365
12.2 Charged Particle Motion 366
CONTENTS

12.3 The Force between Steady Currents 368
12.4 The Magnetic Dipole 372
12.5 The Magnetic Stress Tensor 381
12.6 Magnetostatic Total Energy 384
12.7 Magnetostatic Potential Energy 389
12.8 Inductance 394

Sources, References, and Additional Reading 399
Problems 401

13 Magnetic Matter 407
13.1 Introduction 407
13.2 Magnetization 407
13.3 The Field Produced by Magnetized Matter 412
13.4 Fictitious Magnetic Charge 415
13.5 The Total Magnetic Field 419
13.6 Simple Magnetic Matter 421
13.7 The Energy of Magnetic Matter 433
13.8 Forces on Magnetic Matter 435
13.9 Permanent Magnetic Matter 443

Sources, References, and Additional Reading 447
Problems 448

14 Dynamic and Quasistatic Fields 455
14.1 Introduction 455
14.2 The Ampère-Maxwell Law 456
14.3 Faraday’s Law 460
14.4 Electromagnetic Induction 462
14.5 Slowly Time-Varying Charge in Vacuum 467
14.6 Slowly Time-Varying Current in Vacuum 470
14.7 Quasistatic Fields in Matter 472
14.8 Poor Conductors: Quasi-Electrostatics 473
14.9 Good Conductors: Quasi-Magnetostatics 475
14.10 The Skin Effect 477
14.11 Magnetic Diffusion 481
14.12 Eddy-Current Phenomena 483
14.13 AC Circuit Theory 486

Sources, References, and Additional Reading 493
Problems 494

15 General Electromagnetic Fields 501
15.1 Introduction 501
15.2 Symmetry 501
15.3 Electromagnetic Potentials 503
15.4 Conservation of Energy 507
15.5 Conservation of Linear Momentum 511
15.6 Conservation of Angular Momentum 516
15.7 The Center of Energy 519
15.8 Conservation Laws in Matter 522
CONTENTS

15.9 The Force on Isolated Matter 526

Sources, References, and Additional Reading 529

Problems 531

16 Waves in Vacuum 536

16.1 Introduction 536

16.2 The Wave Equation 537

16.3 Plane Waves 539

16.4 Polarization 545

16.5 Wave Packets 552

16.6 The Helmholtz Equation 557

16.7 Beam-Like Waves 558

16.8 Spherical Waves 565

16.9 Hertz Vectors 569

16.10 Forces on Particles in Free Fields 571

Sources, References, and Additional Reading 575

Problems 577

17 Waves in Simple Matter 584

17.1 Introduction 584

17.2 Plane Waves 584

17.3 Reflection and Refraction 588

17.4 Radiation Pressure 599

17.5 Layered Matter 602

17.6 Simple Conducting Matter 607

17.7 Anisotropic Matter 613

Sources, References, and Additional Reading 616

Problems 617

18 Waves in Dispersive Matter 624

18.1 Introduction 624

18.2 Frequency Dispersion 624

18.3 Energy in Dispersive Matter 627

18.4 Transverse and Longitudinal Waves 629

18.5 Classical Models for Frequency Dispersion 630

18.6 Wave Packets in Dispersive Matter 641

18.7 The Consequences of Causality 649

18.8 Spatial Dispersion 656

Sources, References, and Additional Reading 657

Problems 659

19 Guided and Confined Waves 666

19.1 Introduction 666

19.2 Transmission Lines 667

19.3 Planar Conductors 672

19.4 Conducting Tubes 675

19.5 Dielectric Waveguides 687

19.6 Conducting Cavities 693
CONTENTS

19.7 Dielectric Resonators 704
 Sources, References, and Additional Reading 706
 Problems 707

20 Retardation and Radiation 714
20.1 Introduction 714
20.2 Inhomogeneous Wave Equations 715
20.3 Retardation 719
20.4 The Time-Dependent Electric Dipole 727
20.5 Radiation 730
20.6 Thin-Wire Antennas 737
20.7 Cartesian Multipole Radiation 743
20.8 Spherical Multipole Radiation 755
20.9 Radiation in Matter 762
 Sources, References, and Additional Reading 765
 Problems 767

21 Scattering and Diffraction 775
21.1 Introduction 775
21.2 The Scattering Cross Section 776
21.3 Thomson Scattering 777
21.4 Rayleigh Scattering 782
21.5 Two Exactly Solvable Problems 783
21.6 Two Approximation Schemes 790
21.7 The Total Cross Section 793
21.8 Diffraction by a Planar Aperture 797
21.9 Generalized Optical Principles 807
 Sources, References, and Additional Reading 812
 Problems 814

22 Special Relativity 822
22.1 Introduction 822
22.2 Galileo’s Relativity 823
22.3 Einstein’s Relativity 825
22.4 The Lorentz Transformation 826
22.5 Four-Vectors 834
22.6 Electromagnetic Quantities 839
22.7 Covariant Electrodynamics 848
22.8 Matter in Uniform Motion 858
 Sources, References, and Additional Reading 863
 Problems 865

23 Fields from Moving Charges 870
23.1 Introduction 870
23.2 The Liénard-Wiechert Problem 870
23.3 Radiation in the Time Domain 880
23.4 Radiation in the Frequency Domain 886
23.5 Synchrotron Radiation 891