ELECTRICAL TRANSPORT IN NANOSCALE SYSTEMS

In recent years there has been a huge increase in the research and development of nanoscale science and technology, with electrical transport playing a central role. This graduate textbook provides an in-depth description of the transport phenomena relevant to systems of nanoscale dimensions.

In this textbook the different theoretical approaches are critically discussed, with emphasis on their basic assumptions and approximations. The book also covers information content in the measurement of currents, the role of initial conditions in establishing a steady state, and the modern use of density-functional theory. opics are introduced by simple physical arguments, with particular attention to the non-equilibrium statistical nature of electrical conduction, and followed by a detailed formal derivation. This textbook is ideal for graduate students in physics, chemistry, and electrical engineering.

MASSIMILIANO DI VENTRA is Professor of Physics at the University of California, San Diego. He has published over 70 papers in refereed journals, co-edited the textbook *Introduction to Nanoscale Science and Technology* (Springer, 2004), and has delivered more than 100 invited talks worldwide on the subject of this book. Cambridge University Press 978-0-521-89634-4 - Electrical Transport in Nanoscale Systems Massimiliano Di Ventra Frontmatter More information

ELECTRICAL TRANSPORT IN NANOSCALE SYSTEMS

MASSIMILIANO DI VENTRA University of California, San Diego

© Cambridge University Press

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521896344

© M. Di Ventra 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-89634-4 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-89634-4 - Electrical Transport in Nanoscale Systems Massimiliano Di Ventra Frontmatter More information

> To Elena, Matteo and Francesca

Contents

1	Ар	rimer	on electron transport	page 1	
	1.1 Nanoscale systems			1	
	1.2	Generating currents			
		1.2.1	Finite versus infinite systems	8	
		1.2.2	Electron sources	9	
		1.2.3	Intrinsic nature of the transport problem	10	
	1.3	Meası	Measuring currents		
		1.3.1	Microscopic states	12	
		1.3.2	The current operator	13	
		1.3.3	The measurement process	16	
		1.3.4	Complete measurement and pure states	17	
	1.4	The statistical operator and macro-states			
		1.4.1	Pure and mixed states	21	
		1.4.2	Quantum correlations	22	
		1.4.3	Time evolution of the statistical operator	23	
		1.4.4	Random or partially specified Hamiltonians	24	
		1.4.5	Open quantum systems	25	
		1.4.6	Equilibrium statistical operators	29	
	1.5	Curre	nt measurement and statistical operator truncation	ı 32	
	1.6	One current, different viewpoints			
	Summary and open questions				
	Exer	Exercises			
2	Dru	de mo	del, Kubo formalism and Boltzmann equation	on 39	
	2.1	Drude	e model	39	
	2.2	Resist	ance, coherent and incoherent transport	42	
		2.2.1	Relaxation vs. dephasing	44	

viii	riii Contents		Contents		
		2.2.2	Mean-free path	48	
		2.2.3	The meaning of momentum relaxation time	49	
	2.3	Kubo formalism			
		2.3.1	The current-current response function	55	
		2.3.2	The use of Density-Functional Theory in the Kubo		
			approach	57	
		2.3.3	The fluctuation-dissipation theorem	60	
		2.3.4	Ohmic vs. ballistic regimes	66	
	2.4	Chem	ical, electrochemical and electrostatic potentials	68	
	2.5	Drift-o	diffusion equations	72	
		2.5.1	Diffusion coefficient of an ideal electron gas in the		
			non-degenerate limit	73	
		2.5.2	Generalization to spin-dependent transport	75	
	2.6	Distri	bution functions	77	
	2.7	Boltzr	nann equation	79	
		2.7.1	Approach to local equilibrium	82	
	2.8	Entrop	copy, loss of information, and macroscopic irreversibility		
		2.8.1	The classical statistical entropy	85	
		2.8.2	Quantum statistical entropy	86	
		2.8.3	Information content of the N - and one-particle		
			statistical operators	89	
		2.8.4	Entropy of open quantum systems	90	
		2.8.5	Loss of information in the Kubo formalism	91	
		2.8.6	Loss of information with stochastic Hamiltonians	92	
		2.8.7	Entropy associated with the measurement of currents	93	
	Sum	mary a	nd open questions	94	
	Exer	cises		95	
3	Land	dauer	approach	101	
	3.1	Formu	lation of the problem	102	
	3.2	Local resistivity dipoles and the "field response"			
	3.3	3.3 Conduction from transmission			
		3.3.1	Scattering boundary conditions	115	
		3.3.2	Transmission and reflection probabilities	119	
		3.3.3	Total current	123	
		3.3.4	Two-probe conductance	128	
	3.4	The L	ippmann–Schwinger equation	132	
		3.4.1	Time-dependent Lippmann–Schwinger equation	132	
		3.4.2	Time-independent Lippmann–Schwinger equation	140	
	9 5	C		145	

3.5 Green's functions and self-energy 145

	Contents		ix
	3.5.1 Relation to scattering theory		154
	3.6	The \mathcal{S} matrix	159
		3.6.1 Relation between the total Green's function and	
		the \mathcal{S} matrix	162
	3.7	The transfer matrix	167
		3.7.1 Coherent scattering of two resistors in series	169
		3.7.2 Incoherent scattering of two resistors in series	171
		3.7.3 Relation between the conductance and the transfer	
		matrix	173
		3.7.4 Localization, ohmic and ballistic regimes	174
	3.8	Four-probe conductance in the non-invasive limit	178
		3.8.1 Single-channel case	179
		3.8.2 Geometrical "dilution"	181
		3.8.3 Multi-channel case	182
	3.9	Multi-probe conductance in the invasive limit	185
		3.9.1 Floating probes and dephasing	187
	3.10	Generalization to spin-dependent transport	190
		3.10.1 Spin-dependent transmission functions	194
		3.10.2 Multi-probe conductance in the presence of a	
		magnetic field	195
		3.10.3 Local resistivity spin dipoles and dynamical effects	196
	3.11	1 The use of Density-Functional Theory in the Landauer	
	~	approach	
	Summary and open questions		202
	Exer	cises	203
4	Non	-equilibrium Green's function formalism	209
	4.1	Formulation of the problem	211
		4.1.1 Contour ordering	215
	4.2	Equilibrium Green's functions	217
		4.2.1 Time-ordered Green's functions	218
		4.2.2 Dyson's equation for interacting particles	221
		4.2.3 More Green's functions	223
		4.2.4 The spectral function	225
	4.3	Contour-ordered Green's functions	
		4.3.1 Equations of motion for non-equilibrium Green's functions	233
	4.4	Application to steady-state transport	236
	4.5	Coulomb blockade	244
	4.6	Quantum kinetic equations	250
	-		

х		Contents		
	Summary and open questions Exercises			
5	Noise			
	5.1	The moments of the current		
	5.2	Shot noise	263	
		5.2.1 The classical (Poisson) limit	264	
		5.2.2 Quantum theory of shot noise	266	
	5.3	Counting statistics	274	
	5.4	Thermal noise	275	
	Sum	mary and open questions	277	
	Exer	rcises	277	
6	Elec	ctron-ion interaction	280	
	6.1	The many-body electron-ion Hamiltonian	281	
		6.1.1 The adiabatic approximation for a current-carrying		
		system	282	
		6.1.2 The phonon subsystem	284	
		6.1.3 Electron-phonon coupling in the presence of current	288	
	6.2	Inelastic current	290	
		6.2.1 Inelastic current from standard perturbation theory	291	
		6.2.2 Inelastic current from the NEGF	296	
	6.3	Local ionic heating	312	
		6.3.1 Lattice heat conduction	319	
	6.4	Thermopower	323	
	6.5	Current-induced forces	328	
		6.5.1 Elastic vs. inelastic contribution to electro-migration	1328	
		6.5.2 One force, different definitions	330	
		6.5.3 Local resistivity dipoles and the force sign	333	
		6.5.4 Forces at equilibrium	333	
		6.5.5 Forces out of equilibrium	335	
	0.0	6.5.6 Are current-induced forces conservative?	340	
	6.6 C	Local ionic heating vs. current-induced forces	343	
	Sum	mary and open questions	344	
	Exer	cises	344	
7	The micro-canonical picture of transport		346	
	7.1	Formulation of the problem	347	
		7.1.1 Transport from a finite-system point of view	347	
		(.1.2 Initial conditions and dynamics	349	
	7.2 Electrical current theorems within dynamical DFTs			
		7.2.1 Closed and finite quantum systems in a pure state	351	

			Contents	xi
	7.2.2 Closed quantum systems in a pure state with			
			arbitrary boundary conditions	353
		7.2.3	Current in open quantum systems	354
		7.2.4	Closure of the BBGKY hierarchy	356
		7.2.5	Functional approximations and loss of information	357
	7.3	Trans	ient dynamics	358
	7.4	Prope	rties of quasi-steady states	360
		7.4.1	Variational definition of quasi-steady states	360
		7.4.2	Dependence of quasi-steady states on initial condi-	
			tions	364
	7.5	A non	-equilibrium entropy principle	365
	7.6	Appro	bach to steady state in nanoscale systems	369
	7.7	Defini	tion of conductance in the micro-canonical picture	374
	Sum	mary a	nd open questions	375
8	Hyd	rodyn	amics of the electron liquid	376
	8.1	The N	Adelung equations for a single particle	378
	8.2	Hydro	odynamic form of the Schrödinger equation	380
		8.2.1	Quantum Navier–Stokes equations	382
	8.3	Condu	ictance quantization from hydrodynamics	388
8.4 Viscosit		Viscos	sity from Time-Dependent Current Density-Functiona	l 201
		1 neor	y Functional approximation loss of information and	391
		0.4.1	dissipative dynamics	204
		812	Effect of viscosity on resistance	394 305
	8.5	Turbu	lent transport	397
	8.6	Local	electron heating	403
	0.0	8.6.1	Electron heat conduction	405
		8.6.2	Hydrodynamics of heat transfer	406
		8.6.3	Effect of local electron heating on ionic heating	410
	Sum	mary a	nd open questions	412
	Exer	cises		413
Ap	pendie	\mathbf{ces}		
Ap	pendia	<i>A</i> A	primer on second quantization	415
Ap	pendia	:В Т	he quantum BBGKY hierarchy	420
Ap	pendia	с С Т	he Lindblad equation	423
·	C.1	The L	indblad theorem	424
	C.2	Deriva	ation of the Lindblad equation	426
	C.3	Stead	y-state solutions	430

xii	Contents			
Appendix D Ground-state Density-Functional Theory				
D.1 The Hohenberg–	-Kohn theorem	431		
D.2 The Kohn–Shan	n equations	432		
D.3 Generalization to	o grand-canonical equilibrium	434		
D.4 The local density	y approximation and beyond	434		
Appendix E Time-Depe	endent DFT	436		
E.1 The Runge–Gro	bss theorem	436		
E.2 The time-depend	lent Kohn–Sham equations	437		
E.3 The adiabatic lo	cal density approximation	437		
Appendix F Time-Depe	endent Current DFT	439		
F.1 The current dens	sity as the main variable	439		
F.2 The exchange-co	rrelation electric field	440		
F.3 Approximate for	mulas for the viscosity	442		
Appendix G Stochastic Time-Dependent Current DFT				
G.1 The stochastic S	chrödinger equation	444		
G.2 Derivation of the	e quantum master equation	446		
G.3 The theorem of S	Stochastic TD-CDFT	449		
Appendix H Inelastic co	prrections to current and shot noise	451		
Appendix I Hydrodynamic form of the Schrödinger equation 454				
Appendix J Equation o	f motion for the stress tensor	458		
Appendix K Cut-off of the viscosity divergence				
Appendix L Bernoulli's equation				
References		464		
Index		470		

Preface

"The important thing is not to stop questioning. Curiosity has its own reason for existing." *Albert Einstein*

About ten years ago I was resting between session breaks of a busy American Physical Society March meeting. A colleague, whom I had not seen in ears, was with me and inquired about my work. I told him I was working on understanding transport in nanoscale systems. He replied, "Aren't the most important facts already understood?"

As unsettling as that question was, I realized he was simply echoing a sentiment in the community: the field of mesoscopic systems – larger "cousins" of nanoscale systems – had provided us with a wealth of experimental results, and a theoretical construct – known as the single-particle scattering approach to conduction – that had almost assumed the characteristics of a "dogma". Many transport properties of mesoscopic systems could be understood in terms of this approach. Books on the subject had appeared which enumerated the successes of this theory. Nanoscale systems were nothing else than smaller versions of mesoscopic systems. All we needed to do was transfer the established experimental knowledge – and proven theoretical and computational techniques – to this new length scale. Or so it seemed.

The past decade has shown that the field of transport in nanoscale systems is *not* a simple extension of mesoscopic physics. Thanks to improved experimental capabilities and new theoretical approaches and viewpoints, it has ecome clear that novel transport properties emerge at the nanometer scale. In addition, many physical assumptions and approximations we reasonably make to describe mesoscopic systems may not hold for nanoscale structures. Most importantly, it is now starting to sink in that we need to treat the many-body transport problem for what it truly is: a *non-equilibrium statis*-

xiv

Preface

tical problem. Conducting electrons – and the background ionic structure – are in a state of non-equilibrium, whose properties are known, at best, statistically, even at steady state. By neglecting the true non-equilibrium statistical nature of this problem, we may neglect important dynamical phenomena of particular relevance in nanostructures.

This book attempts to reframe the transport problem with this perspective in mind. Therefore, attention is given to questions that are often overlooked in the literature, e.g., how electrical current is generated, what do we measure when we measure currents, what is the role of initial conditions in establishing a steady state, etc. The language of information theory is used throughout the book to quantify the amount of information one can gather from either the measurement of the current, or the various descriptions of electrical conduction. In addition, I have tried to critically point out the underlying physical assumptions and approximations of the different approaches to transport. It is my opinion that some of the concepts we generally take for granted need to be applied with more care in the case of nanoscale systems, and novel physics may emerge if some of these approximations/assumptions are lifted.

Transport theories belong to the field of non-equilibrium statistical mechanics and are, first and foremost, based on *viewpoints*, not sets of equations. Each of these viewpoints contributes bits of information to our understanding of electrical conduction. The book is thus roughly divided into the description of these viewpoints, the similarities and differences among them, and the physical phenomena one can predict from them. In addition, due to the growing importance of density-functional theory (DFT) – in both its ground-state and dynamical formulations – in transport, the book contains a description of DFT so that it is as self-contained as possible. In particular, the fundamental limitations of ground-state DFT in approaches to electrical conduction are highlighted, and several theorems on the total current are formulated and demonstrated within dynamical density-functional theories. The inclusion of these theorems is not a tribute to mathematics. Rather, it shows the conceptual and formal strengths of these theories in describing electrical transport.

A colleague of mine, who has written textbooks, once told me: "A book is useful to at least one person: its own author." While this statement is definitely true in my case – in the sense that by writing it I have deepened my knowledge and understanding of the subject beyond what everyday research would have probably allowed me – I truly hope this textbook will be of use to its readership, especially those students and researchers who approach the subject for the first time. I have tried to write it at a level accessible

Preface

to graduate students with a good background in quantum mechanics and statistical mechanics. Some knowledge of solid state physics may help but is not necessary. The derivations of almost all the main results are written explicitly. When this would have resulted in an unnecessary increase in length, I left them as exercises for the reader, or in few cases referred to other textbooks. In this respect, the most difficult topic is probably the non-equilibrium Green's function formalism of Chapter 4. As a compromise etween synthesis and clarity, I have written enough about this many-body technique for the reader to follow its basic tenets and results, and referred to other textbooks whenever the level of details seemed to overshadow the main physics. Finally, some of the exercises add to the topics discussed in the main text, or provide useful reference to some mathematical statements

use but have no space to prove.

I have left out topics like superconductivity, the Kondo problem, Luttinger liquid, weak localization, and universal conductance fluctuations. This is not ecause I believe they are not important but because a comprehensive description of these phenomena would have resulted in a very lengthy extension of the manuscript, with the addition of advanced mathematical formalisms. There are other excellent textbooks that cover these topics. I also apologize in advance to all the authors who feel their work has not been properly credited, and remind them that this is intended as a textbook not a review.

Despite all my efforts and the amount of energy spent to write this book with as much care as I could possibly muster, it would be foolish of me to think that with more than 1200 equations – and a comparable numer of concepts – this manuscript would be free of errors. I will therefore ost any correction I uncover after its publication on a link to my website http://physics.ucsd.edu/~diventra/, and take comfort in the old saying: "Those who never make mistakes make the biggest mistake of all: they never try anything new."

There are too many people who directly or indirectly have contributed to my personal understanding of the subject, and have helped me in this endeavor. I particularly wish to thank Norton Lang, who introduced me to the topic of transport in nanoscale systems. My gratitude also goes to Hardy Gross, Doug Natelson, Nongjian Tao, Tchavdar Todorov, Jan an Ruitenbeek, and Giovanni Vignale, for enlightening discussions, and to Congjun Wu for taking time off his busy schedule to read most of the manuscript. His suggestions and criticisms have helped me improve it. I am also indebted to Dan Arovas who has shared with me his lecture notes on mesoscopic physics. Some topics of Chapter 3 have been inspired by these notes. xvi

Preface

I feel fortunate to have worked over the years with talented students and post-doctoral associates. They have shared with me the difficulties and excitement of some of the research that has made it through the pages of this book. Those directly involved in the topics presented here are Neil Bushong, Yu-Chang Chen, Roberto D'Agosta, Yonatan Dubi, John Gamble, Matt Krems, Johan Lagerqvist, Yuriy Pershin, Na Sai, Eric Wright, Zhongqin Yang, and Mike Zwolak. Many of them have also read parts of the manuscript, found several misprints, and made valuable suggestions. Needless to say, any remaining error is due solely to the author.

I also wish to thank the National Science Foundation, the Department of Energy, the National Institutes of Health, and the Petroleum Research Fund for generously funding my research over the years. These funding agencies are, however, not responsible for the ideas expressed in this manuscript.

Finally, the writing of a book takes an enormous amount of energy and time at the expense of the relationships that are most dear to one's life. It is the loving support, understanding, and patience of my wife, Elena, and of my two children, Francesca and Matteo, that have made this project possible. Their presence and encouragement have sustained me during the most difficult times, when it would have been so easy to simply give up. A thank you does not make full justice of my feelings of gratitude and love towards them.

Massimiliano Di Ventra La Jolla, San Diego