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A primer on electron transport

1.1 Nanoscale systems

Let us briefly discuss the systems I will consider in this book, those of
nanoscale dimensions (1 nm = 10−9 m). The phenomena and theoretical
approaches I will present are particularly relevant for these structures rather
than those with much larger dimensions.

So, what is a nanoscale system? The simplest – and most natural – an-
swer is that it is a structure with at least one dimension at the nanoscale,
meaning that such dimension is anywhere in between a few tens of nanome-
ters and the size of an atom (Di Ventra et al., 2004a). One can then define
structures with larger – but still not yet macroscopic – dimensions as meso-
scopic. This separation of scales is arguably fuzzy. Mesoscopic structures
share some of the transport properties of nanostructures; the theoretical de-
scription of both classes of systems is often similar; and in certain literature
no distinction between them is indeed made.

Is there then, in the context of electrical conduction, another key quantity
that characterizes nanoscale systems? As I will emphasize several times in
this book, this key quantity is the current density – current per unit area –
they can carry. This can be extremely large.

As an example, consider a wire made using a mechanically controllable
break junction (Muller et al., 1992), a junction that is created by mechani-
cally breaking a metal wire. Such a structure – a type of metallic quantum
point contact – may result in a single atom in between two large chunks of
the same material (see schematic in Fig. 1.1). If a typical current of 1µA
is set to flow across the system, at the atom position, considering a cross
section of 10 Å2, we would expect a current density of about 1×109 A/cm2!
These current densities are typically orders of magnitude larger than those
found in mesoscopic/macroscopic systems.
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A primer on electron transport

Fig. 1.1. Schematic of an
atomic metallic quantum
point contact.

A large current density implies a large number of scattering events per
unit time and unit volume. This means that interactions among electrons,
or among electrons and ions are particularly important.

Note that I have said nothing about how fast a single electron “crosses”
nanoscale structure. This transit time may be extremely short. However,

due to the large current density the cumulative effect of all electrons is to
amplify electron-electron and electron-ion interactions locally in the nanos-
tructure. For instance, as I will discuss later in the book, both ions and
electrons heat up locally in the junction above their nominal background
temperature, thus affecting its structural stability under current flow.

Fig. 1.2. Left panel: A quasi-1D wire laid on top of a surface and in between two
bulk electrodes. Right panel: A single molecule between bulk electrodes. The
arrows indicate the direction of charge flow.

I mention here a few other nanoscale systems of present interest. These
include nanotubes or long atomic wires in contact with metal electrodes (see
Fig. 1.2, left panel), and small molecules sandwiched between bulk metals
(Fig. 1.2, right panel). These systems may sometimes be referred to as
quantum dots if their bonding to the electrodes is very weak (these concepts
will become clearer as we go along with the book).

Many other structures – and their combinations – that confine electrons
in one or more dimensions can be fabricated. These systems represent ideal
test beds to understand electron and ion dynamics at these length scales,
and may find application in the broadly defined field of optoelectronics, or
even in biotechnology and medicine. The latter point is particularly relevant
nowadays as the conducting properties of DNA and its single units – called
ucleotides – are being studied for possible use in sequencing technology

(Zwolak and Di Ventra, 2008).
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1.2 Generating currents 3

Fig. 1.3. (a) Two finite electrodes charged differently. (b) The electrodes are con-
nected via a junction. (c) Symbol used to represent a battery.

The above list of examples can go on and on. To illustrate the phenom-
ena discussed in this book, I will refer to selected nanoscale systems whose
properties have been studied experimentally. The choice of these specific
examples reflects both their pedagogical appeal and, of course, the author’s
taste.

1.2 Generating currents

Before considering the different approaches one can employ to formulate the
transport problem in nanoscale systems, let us ask a basic question that will
guide us in developing theories of charge transport, namely

How do we generate electrical currents?

There are several answers to this question suggesting different ways to
describe the corresponding transport problem.

Let us start from the simplest experimental realization possible. Consider
two large but finite electrodes and charge them differently: one has more
electrical charge than the other, or equivalently one is charged negatively, the
other positively. How we charge these electrodes is irrelevant. For instance,
we can do it by simply rubbing them with some other material!

I label the one with more electrons with a “−” sign, the other with a “+”
sign (see Fig. 1.3(a)). At equilibrium, and due to the conducting nature of
each electrode, the extra charge (whether negative or positive) is found on
the surface of the electrodes. The electrons in the “−” electrode have higher
potential energy (and lower electrostatic potential) than the electrons in the
“+” electrode. A potential difference, or bias, between the two electrodes
has been created so that if we put them in contact by means of some other
conducting material, electrons will flow from the “−” region to the “+”
region (see Fig. 1.3(b)). Electrical current has been thus established.
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A primer on electron transport

We can now take an arbitrary surface S cutting the conductor in between
the two electrodes and determine the rate at which electrons cross this sur-
face (see Fig. 1.3(b)). Let us indicate with l̂ the unit vector perpendicular
to an infinitesimal element dS of the surface S. At every instant of time,
and at every point in space, we can assign to the electrons a velocity

vtot(r, t) = vth(r, t) + vdrif t(r, t) (1.1)

which is sum of a randomly oriented1 velocity, vth, due to thermal fluctua-
tions, and a component, vdrif t, we call drift velocity, that, on average, points
in the direction of global electron flow.2 If we average the above velocity
ver all particles, only the average drift velocity is different from zero,

v(r, t) ≡ 〈vth(r, t)〉 + 〈vdrif t(r, t)〉 = 〈vdrif t(r, t)〉, (1.2)

where the bracket operation 〈· · · 〉 means average over the ensemble of par-
ticles. If n(r, t) is the number density of carriers with charge e at any given
oint in space and any given instant of time,3 the amount of charge dQ that

crosses the surface dS in an infinitesimal time dt is

dQ = env · l̂ dS dt. (1.3)

The current across the surface dS is thus

dI =
dQ

dt
= env · l̂ dS ≡ j · dS, (1.4)

where I have defined the current density vector

j(r, t) = en(r, t)v(r, t), (1.5)

and the surface vector dS = l̂ dS. The total average current across the
surface S is then the integral

IS(t) =
∫

S
dS · j(r, t), (1.6)

where the subscript S is to remind us that, in general, the total current
depends on the chosen surface.4

Randomly oriented means that the thermal velocity has an isotropic spatial distribution.
In the next chapter I will discuss physical reasons why the drift velocity does not increase
indefinitely in time.
For electrons, I choose the convention e = −|e|. Note that the standard convention for the
direction of current is opposite to the electron flow direction.
In strictly 2D systems the surface integral in the definition 1.6 is replaced by a line integral,
and the current density 1.5 is defined with the 2D number density. In 1D the current and
the current density are the same quantity, with the definition 1.5 containing the 1D number
density.
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1.2 Generating currents 5

Polarization and magnetization

In addition to “free” charges, which are able to move across macroscopic re-
gions of the system, there may be bound charges and localized currents, i.e.,
charges and currents localized to microscopic regions of the sample. Bound
charges give rise to polarization, and localized currents to magnetization.
Let us call qi these bound charges at position ri, and vi their velocities.
From classical electrodynamics we know that the polarization is (Jackson,
1975)

P(r) =
1
V

∑
i

qi ri, (1.7)

i.e., the average dipole moment per unit volume, and the magnetization

M(r) =
1

2cV

∑
i

qi (ri × vi) , (1.8)

is the average magnetic moment per unit volume, where the sums extend
over all charges in a volume V centered at position r, and c is the speed of
light. The total current density is (Jackson, 1975)

jtot(r, t) = en(r, t)v(r, t) +
∂P
∂t

+ c∇× M, (1.9)

and the total density

entot = en −∇ · P. (1.10)

The total current is given again by Eq. 1.6, the integral of the total current
density over a surface S. In the following, when discussing densities and
current densities, I will always refer to the total density 1.10 and current
density 1.9, even though the contributions to the current from polarization
and magnetization are, in most of the systems and conditions discussed in
this book, small.5

In addition, the current density 1.9 generates a magnetic field, which
“acts back” on the current, and thus modifies it. This self-consistent effect
is known as magnetic screening. It is generally a small effect for the systems
I consider in this book, for the same reasons that the magnetic current

5 For instance, at steady state the polarization current is zero; for non-magnetic materials and
small magnetic fields, the magnetization is small. Indeed, for paramagnetic and diamagnetic
materials |M| ∝ χ|B|, with B an external magnetic field, and χ is the magnetic susceptibility. χ
is of the order of 10−3 −10−5 cm3 /mol (Ashcroft and Mermin, 1975) so that the magnetization
is a very small fraction of the field. We will see in Chapter 7 that stochastic time-dependent
current density functional theory provides a formally – in principle – exact way to calculate all
contributions (from free and bound charges and localized currents) to the current density of a
many-body system using effective single-particle equations.
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A primer on electron transport

Fig. 1.4. The current as a
function of time during the
discharge of a capacitor. The
current fluctuates around
some average value as shown
schematically in the inset.

contribution in Eq. 1.9 is small. I thus either neglect it altogether,6 or
assume the current has been determined self-consistently with this magnetic
screening effect included.

To the above we need to add the continuity equation7

e
∂n(r, t)

∂t
= −∇ · j(r, t) (1.11)

that states the conservation of charge.

Fluctuations and reservoirs

The gedanken experiment I have outlined describes the discharge of a ca-
pacitor across a conductor. We then know from experiments that as time
goes on the current IS(t) decays (see Fig. 1.4) so that, if we wait enough
time, no current (in a time-averaged sense) will flow across the surface S: all
negative charges on the “−” electrode have neutralized all positive charges
on the “+” electrode, and the electrode-conductor-electrode system ends up
in global equilibrium.

We can however make this decay time longer and longer by increasing
the size of the electrodes while keeping the conductor in between them un-
hanged. This corresponds to increasing the number of carriers that are

stored in the two electrodes. In classical circuit theory this corresponds to
increasing the capacitance of the capacitor while keeping the electron resis-

This is clearly a theoretical statement: in experiments one cannot eliminate this screening
effect.
Since the divergence of the curl of a vector is zero, the continuity equation is identically satisfied
between the total current 1.9 and the total density 1.10:

e
∂ntot (r, t)

∂t
= −∇ · jtot (r, t).

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-89634-4 - Electrical Transport in Nanoscale Systems
Massimiliano Di Ventra
Excerpt
More information

http://www.cambridge.org/9780521896344
http://www.cambridge.org
http://www.cambridge.org


1.2 Generating currents 7

tance to flow from one plate of the capacitor to the other constant. Intu-
itively, one may guess that if the dimensions of the electrodes were set to go
to infinity while keeping the conductor and its contact with the electrodes
unchanged, the average current would not change in time, and its value
would be independent of the chosen surface S used to evaluate Eq. 1.6.8

In reality, the electrical current continually fluctuates about an average
value (see inset of Fig. 1.4). If we take a time interval T large enough that
many current fluctuations occur in that interval, but not so large that the
decay of the current is appreciable, we can define

〈IS〉 =
1
T

∫ +T/2

−T/2
dt IS(t) (1.12)

as the average current in that interval.9 If we take the limit of infinite
electrodes first, we can then take the limit of T → +∞. We thus realize the
current-carrying steady state condition

d〈IS〉
dt

= 0 stationarity condition, (1.13)

in which the time derivative of the average total current is zero.10

The above limit of infinite electrodes is also the first encounter with the
theoretical concept of reservoir, which I will develop further in Chapter 3.
Here, I give the following definition

Reservoir: An ideal “system” that can supply and receive an arbitrary
amount of carriers and energy without changing its internal
state.

If this “ideal system” exchanges only energy, and not particles, with some
other physical system – whose dynamics we are interested in – I shall call it
bath and not reservoir. Both the bath and the reservoir embody the notion
that physical systems are never truly closed; they always have some degree
of interaction with an external environment.11

8 Note, however, that the infinite electrode size is no guarantee that the stationary condition 1.13
is satisfied (see discussion in Sec. 7.6).

9 Note that an analogous averaging process is always performed by the actual apparatus measur-
ing the current. This is due to the fact that such apparatus has a finite frequency bandwidth
∆ν . Here I am assuming that 1/∆ν � T .

10 I anticipate here that the time average 1.12 in the limit of T → +∞ may be replaced by
the average over all possible electron state configurations (ensemble-averaged current). This is
known as the ergodic hypothesis. I will come back to it in Chapter 2 where I will also discuss
the conditions for its validity.

11 Consider for instance electrons in a solid kept at a finite temperature. The finite temperature
is that of an external bath. For this bath to be called as such, the dynamics of the electrons
cannot affect its properties, namely its temperature.
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A primer on electron transport

1.2.1 Finite versus infinite systems

Indeed, the experimental fact that the discharge of a finite capacitor ends up
in a state of global equilibrium (no average current flows) is a consequence
of the fact that the electrons in the capacitor are coupled to some external
environment.12 They thus lose energy during the discharge. If the electron
system is truly closed, namely electrons do not interact with any external
environment – and they are not subject to any external field13 – their total
energy is conserved, and their dynamics is deterministic in the sense that

e can (in principle) solve exactly their equation of motion at all times –
the Schrödinger equation 1.16 in the quantum case. We then know that the
following Poincaré recurrence theorem applies: there exists a time – called
the recurrence time – after which the system will return to the neighborhood
of its initial conditions. “Neighborhood” means as close as possible to the
initial conditions.

For the case at hand, this implies that a finite, closed and isolated capac-
itor will eventually return to its initial state: it will recharge itself! This
apparent paradox, however, does not pose any practical worry. Even if the
electron system were truly closed, its recurrence time would be extremely
long.

For clarity, consider the quantum case. The many-body states of the
capacitor are eigenstates of some Hamiltonian Ĥ. Since we are dealing with

large number N of interacting electrons (of the order of an Avogadro’s
number NA = 6×1023 particles/mol) the spectrum of Ĥ is extremely dense,
namely the separation between the many-body energy states dE is extremely
small. If ∆E is a representative energy interval of the system,14 and M

the number of states in that interval, it is indeed easy to argue that the
separation between many-body energy states is of the order of (Landau and
Lifshitz, 1959a)

dE ∼ ∆E

M
∼ ∆E e−S/kB ∼ ∆E e−N , (1.14)

where S is the statistical entropy I will discuss in Sec. 2.8, kB = 1.38×10−23

J/K is the Boltzmann constant. In the above I have used the fact that the

The ionic vibrations of the underlying lattice may be such an environment if they form a dense
energy spectrum, and no correlated state between electrons and vibrations forms. Otherwise,
energy will flow back and forth between electrons and ionic vibrations, and the following con-
siderations apply to this combined system.
Which means the system is also isolated. In this book, I will choose the convention of calling a
system closed when it is not interacting dynamically with an environment, and isolated when
it is not subject to external deterministic forces, like a classical electromagnetic field.
Statistically, this interval represents the width of the energy distribution of the system, like the
bandwidth in the single-particle case.
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1.2 Generating currents 9

number of states is exponentially related to the statistical entropy15 and the
latter is an extensive variable, namely it increases with the dimensions of
the system, or, equivalently, with the number of particles.

The recurrence time is thus of the order of

∆trec ∼
�

dE
∼ �

∆E
eN , (1.15)

which for a macroscopically large number of particles may be much larger
than the age of the universe!16 For all practical purposes, there is no way
for us to observe the reverse process, the recharge of a closed capacitor, and
the dynamics of the system is thus practically irreversible.17

The above point is interesting for another reason. If I keep the electron
system closed, but I make it truly infinite, namely with an infinite number
of particles, the spectrum of its Hamiltonian becomes a continuum, dE → 0,
and the recurrence time tends to infinity, ∆trec → +∞. This means that an
infinite system will never return to its initial state, and therefore we do not
need to worry about recurrence times: the dynamics of an infinite system is
intrinsically irreversible. In this case, the energy is diluted into an infinite
number of degrees of freedom (property of a bath, as I have discussed above),
and if we added a particle to it we would not be able to modify the internal
state of the system (property of a reservoir), and that particle would be
“lost” into the reservoir, in the sense that, almost immediately, we would
not be able to follow its dynamics.18

1.2.2 Electron sources

In real life there is clearly no such a thing as an infinite system and in or-
der to set current flowing one generally relies on batteries attached to the
electrodes. The batteries are devices that, via internal chemical processes,
continually charge the surfaces of the electrodes so that a constant potential
difference can be applied at the two contacts between the electrodes and

15 I will demonstrate this explicitly in Sec. 2.8, Eq. 2.144. Here I just need to use this property
to show that an infinite capacitor has an infinite recurrence time.

16 As an example, consider a system with only 100 electrons, whose many-body spectrum is
distributed over ∆E = 1 eV of energy. From Eq. 1.14, dE ≈ 10−44 eV, and the recurrence
time, Eq. 1.15, is ∆tr ec ∼ �/dE ≈ 1028 s, or about 1020 years! This number has to be compared
with the age of the universe which is about 1018 s.

17 This result applies even if we could solve exactly the equation of motion of a macroscopic number
of particles. Needless to say, this is a practically impossible task. Approximations to the exact
dynamics introduce loss of information, and thus provide another source of irreversibility of
dynamical systems (see Sec. 2.8).

18 This statement is obvious in the quantum case where electrons are indistinguishable. It is
also true in classical mechanics where, for all practical purposes, it is impossible to follow the
dynamics of a single particle in an ensemble of infinite identical particles.
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10 A primer on electron transport

the battery, with consequent current flow across the electrode-conductor-
electrode structure. In other words, the battery creates a capacitor-like
situation as discussed above, and, in addition, maintains it till the chemi-
cal processes run out. I will use the conventional symbol for a battery as
represented in Fig. 1.3(c).

Electrons from the negative side of the battery cross the whole length of
the structure to be collected at the other positive end of the battery. On
verage, at the same time electrons are injected from the negative side into

the structure thanks to the electrochemical reaction inside the battery. If for
moment we put quantum mechanics aside and could label single electrons,
e could easily argue that the ones that get into the positive side of the

battery are not necessarily the same ones that get out of the battery from
its negative side. Quite generally, we would need inelastic processes to carry
electrons inside the battery from its positive terminal to the negative one.
Inelastic means that any one electron changes its energy in going from the
ositive terminal to the negative terminal inside the battery.
Most importantly, once an electron is collected at the positive end of the

battery, its subsequent dynamics is practically impossible to follow, and this
electron is “lost” into the battery, most likely without changing the internal
state of the latter. Similarly, we can assume that an electron leaving the
battery does not modify its state considerably. In other words, the battery
effectively acts as a reservoir of electrons.

1.2.3 Intrinsic nature of the transport problem

Are these the only ways we can generate current? Not quite. For in-
stance, we can go back to our finite electrode-conductor-electrode system
of Fig. 1.3(b) after the discharge is complete, i.e., the system is at equi-
librium. We can then immerse it in an oscillating electric field. Electric
harges would then respond to the field and would start moving from one

electrode to the other, generating current. One can also generate current in
metallic ring threaded by a magnetic field (see, e.g., Kamenev and Kohn,

2001), and so on and so forth.
All this seems awfully complicated to describe theoretically. There appear

to be so many ways we can generate currents, and so many processes we
need to take into account (e.g, the chemical processes in the battery). And

have not even discussed what happens in the conductor itself, or how we
probe these currents!

This leads us to the following question: What is our main concern when
e want to study transport properties of a given system? For instance, are
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