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Algebraic and geometric methods in statistics
Paolo Gibilisco, Eva Riccomagno, Maria Piera Rogantin, Henry P. Wynn

1.1 Introduction

It might seem natural that where a statistical model can be defined in algebraic
terms it would be useful to use the full power of modern algebra to help with the
description of the model and the associated statistical analysis. Until the mid 1990s
this had been carried out, but only in some specialised areas. Examples are the
use of group theory in experimental design and group invariant testing, and the
use of vector space theory and the algebra of quadratic forms in fixed and random
effect linear models. The newer area which has been given the name ‘algebraic
statistics’ is concerned with statistical models that can be described, in some way,
via polynomials. Of course, polynomials were there from the beginning of the field of
statistics in polynomial regression models and in multiplicative models derived from
independence models for contingency tables, or to use a more modern terminology,
models for categorical data. Indeed these two examples form the bedrock of the
new field. (Diaconis and Sturmfels 1998) and (Pistone and Wynn 1996) are basic
references.

Innovations have entered from the use of the apparatus of polynomial rings: alge-
braic varieties, ideals, elimination, quotient operations and so on. See Appendix 1.7
of this chapter for useful definitions. The growth of algebraic statistics has coin-
cided with the rapid developments of fast symbolic algebra packages such as CoCoA,
Singular, 4ti2 and Macaulay 2.

If the first theme of this volume, algebraic statistics, relies upon computational
commutative algebra, the other one is pinned upon differential geometry. In the
1940s Rao and Jeffreys observed that Fisher information can be seen as a Rie-
mannian metric on a statistical model. In the 1970s Čencov, Csiszár and Efron
published papers that established deep results on the involved geometry. Čencov
proved that Fisher information is the only distance on the simplex that contracts
in the presence of noise (Čencov 1982).

The fundamental result by Čencov and Csiszár shows that with respect to the
scalar product induced by Fisher information the relative entropy satisfies a Pytha-
gorean equality (Csiszár 1975). This result was motivated by the need to minimise

Algebraic and Geometric Methods in Statistics, ed. Paolo Gibilisco, Eva Riccomagno, Maria
Piera Rogantin and Henry P. Wynn. Published by Cambridge University Press. c© Cambridge
University Press 2010.

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89619-1 - Algebraic and Geometric Methods in Statistics
Edited by Paolo Gibilisco, Eva Riccomagno, Maria Piera Rogantin and Henry P. Wynn
Excerpt
More information

http://www.cambridge.org/9780521896191
http://www.cambridge.org
http://www.cambridge.org


2 The editors

relative entropy in fields such as large deviations. The differential geometric coun-
terparts are the notions of divergence and dual connections and these can be used
to give a differential geometric interpretation to Csiszár’s results.

Differential geometry enters in statistical modelling theory also via the idea of
exponential curvature of statistical models due to (Efron 1975). In this ‘exponential’
geometry, one-dimensional exponential models are straight lines, namely geodesics.
Sub-models with good properties for estimation, testing and inference, are charac-
terised by small exponential curvature.

The difficult task the editors have set themselves is to bring together the two
strands of algebraic and differential geometry methods into a single volume. At the
core of this connection will be the exponential family. We will see that polynomial
algebra enters in a natural way in log-linear models for categorical data but also
in setting up generalised versions of the exponential family in information geome-
try. Algebraic statistics and information geometry are likely to meet in the study
of invariants of statistical models. For example, on one side polynomial invariants
of statistical models for contingency tables have long been known (Fienberg 1980)
and in phylogenetic algebraic invariants were used from the very beginning in the
Hardy–Weinberg computations (Evans and Speed 1993, for example) and are be-
coming more and more relevant (Casanellas and Fernández-Sánchez 2007). While on
the other side we recall with Shun-Ichi Amari1 that ‘Information geometry emerged
from studies on invariant properties of a manifold of probability distributions’. The
editors have asked the dedicatee, Giovanni Pistone, to reinforce the connection in
a final chapter. The rest of this introduction is devoted to an elementary overview
of the two areas, avoiding too much technicality.

1.2 Explicit versus implicit algebraic models

Let us see with simple examples how polynomial algebra may come into statistical
models. We will try to take a transparent notation. The technical, short review of
algebraic statistics in (Riccomagno 2009) can complement our presentation.

Consider quadratic regression in one variable:

Y (x) = θ0 + θ1x + θ2x
2 + ε(x). (1.1)

If we observe (without replication) at four distinct design points, {x1 , x2 , x3 , x4} we
have the usual matrix form of the regression

η = E[Y ] = Xθ, (1.2)

where the X-matrix takes the form:

X =

⎛
⎜⎜⎝

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

1 x4 x2
4

⎞
⎟⎟⎠ ,

and Y , θ are the observation, parameter vectors, respectively, and the errors have
1 Cited from the abstract of the presentation by Prof Amari at the LIX Colloquium 2008, Emerg-

ing Trends in Visual Computing, 18th-20th November 2008, Ecole Polytechnique.
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Algebraic and geometric methods in statistics 3

zero mean. We can give algebra a large role by saying that the design points are
the solution of g(x) = 0, where

g(x) = (x − x1)(x − x2)(x − x3)(x − x4). (1.3)

In algebraic terms the design is a zero-dimensional variety. We shall return to this
representation later.

Now, by eliminating the parameters θi from the equations for the mean response:
{ηi = θ0 + θ1xi + θ2x

2
i , i = 1, . . . 4} we obtain an equation just involving the ηi and

the xi :

−(x2 − x3)(x2 − x4)(x3 − x4)η1 + (x1 − x3)(x1 − x4)(x3 − x4)η2

−(x1 − x2)(x1 − x4)(x2 − x4)η3 + (x1 − x2)(x1 − x3)(x2 − x3)η4 = 0, (1.4)

with the conditions that none of the xi are equal. We can either use formal algebraic
elimination (Cox et al. 2008, Chapter 3) to obtain this or simply note that the linear
model (1.2) states that the vector η belongs to the column space of X, equivalently
it is orthogonal to the orthogonal (kernel, residual) space. In statistical jargon
we might say, in this case, that the quadratic model is equivalent to setting the
orthogonal cubic contrast equal to zero. We call model (1.2) an explicit (statistical)
algebraic model and (1.4) an implicit (statistical) algebraic model.

Suppose that instead of a linear regression model we have a Generalized Linear
Model (GLM) in which the Yi are assumed to be independent Poisson random
variables with means {µi}, with log link

log µi = θ0 + θ1xi + θ2x
2
i , i = 1, . . . , 4.

Then, we have

−(x2 −x3)(x2 −x4)(x3 −x4) log µ1 + (x1 −x3)(x1 −x4)(x3 −x4) log µ2

−(x1 −x2)(x1 −x4)(x2 −x4) log µ3 + (x1 −x2)(x1 −x3)(x2 −x3) log µ4 = 0. (1.5)

Example 1.1 Assume that the xi are integer. In fact, for simplicity let us take
our design to be {0, 1, 2, 3}. Substituting these values in the Poisson case (1.5) and
exponentiating we have

µ1µ
3
3 − µ3

2µ4 = 0.

This is a special variety for the µi , a toric variety which defines an implicit model. If
we condition on the sum of the ‘counts’: that is n =

∑
i Yi , then the counts become

multinomially distributed with probabilities pi =µi/n which satisfy p1p
3
3− p3

2p4 = 0.

The general form of the Poisson log-linear model is ηi = log µi = X�
i θ, where �

stands for transpose and X�
i is the i-th row of the X-matrix. It is an exponential

family model with likelihood:

L(θ) =
∏

i

p(yi, µi) =
∏

i

exp(yi log µi − µi − log yi !)

= exp

⎛
⎝∑

i

yi

∑
j

Xij θj −
∑

i

µi −
∑

i

log yi !

⎞
⎠ ,
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4 The editors

where yi is a realization of Yi . The sufficient statistics can be read off in the usual
way as the coefficients of the parameters θj :

Tj =
∑

i

Xij yi = X�
j Y,

and they remain sufficient in the multinomial formulation. The log-likelihood is

∑
j

Tj θj −
n∑

i=1

µi −
n∑

i=1

log yi !

The interplay between the implicit and explicit model forms of algebraic statisti-
cal models has been the subject of considerable development; a seemingly innocuous
explicit model may have a complicated implicit form. To some extent this devel-
opment is easier in the so-called power product, or toric representation. This is, in
fact, very familiar in statistics. The Binomial(n, p) mass distribution function is

(
n

y

)
py (1 − p)n−y , y = 0, . . . , n.

Considered as a function of p this is about the simplest example of a power product
representation.

Example 1.2 (Example 1.1 cont.) For our regression in multinomial form the
power product model is

pi = ξ0ξ
xi
1 ξ

x2
i

2 , i = 1, . . . , 4,

where ξj = eθj , j = 0, . . . , 2. This is algebraic if the design points {xi} are integer.
In general, we can write the power product model in the compact form p = ξX .

Elimination of the pi , then gives the implicit version of the toric variety.

1.2.1 Design

Let us return to the expression for the design in (1.2). We use a quotient operation
to show that the cubic model is naturally associated to the design {xi : i = 1, . . . , 4}.
We assume that there is no error so that we have exact interpolation with a cubic
model. The quadratic model we chose is also a natural model, being a sub-model
of the saturated cubic model. Taking any polynomial interpolator ỹ(x) for data
{(xi, yi), i = 1, . . . , 4}, with distinct xi , we can quotient out with the polynomial

g(x) = (x − x1)(x − x2)(x − x3)(x − x4)

and write

ỹ(x) = s(x)g(x) + r(x),

where the remainder, r(x), is a univariate, at most cubic, polynomial. Since
g(xi) = 0, i = 1, . . . , 4, on the design r(x) is also an interpolator, and is the unique
cubic interpolator for the data. A major part of algebraic geometry, exploited in
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Algebraic and geometric methods in statistics 5

algebraic statistics, extends this quotient operation to higher dimensions. The de-
sign {x1 , . . . , xn} is now multidimensional with each xi ∈ Rk , and is expressed as
the unique solution of a set of polynomial equations, say

g1(x) = . . . = gm (x) = 0 (1.6)

and the quotient operation gives

ỹ(x) =
m∑

i=1

si(x)gi(x) + r(x). (1.7)

The first term on the right-hand side of (1.7) is a member of the design ideal. This
is defined as the set of all polynomials which are zero on the design and is indicated
as 〈g1(x), . . . , gm (x)〉. The remainder r(x), which is called the normal form of ỹ(x),
is unique if the {gj (x)} form a Gröbner basis which, in turn, depends on a given
monomial ordering (see Section 1.7). The polynomial r(x) is a representative of a
class of the quotient ring modulo the design ideal and a basis, as a vector space, of
the quotient ring is a set of monomials {xα , α ∈ L} of small degree with respect to
the chosen term-ordering as specified in Section 1.7. This basis provides the terms
of e.g. regression models. It has the order ideal property, familiar from statistics,
e.g. the hierarchical property of a linear regression model, that α ∈ L implies β ∈ L

for any β ≤ α (component-wise). The set of such bases as we vary over all term-
orderings is sometimes called the algebraic fan of the design. In general it does not
give the set of all models which can be fitted to the data, even if we restrict to
models which satisfy the order ideal property. However, it is, in a way that can
be well defined, the set of models of minimal average degree. See (Pistone and
Wynn 1996) for the introduction of Gröbner bases into design, (Pistone et al. 2001)
for a summary of early work and (Berstein et al. 2007) for the work on average
degree.

Putting all the elements together we have half a dozen classes of algebraic sta-
tistical models which form the basis for the field: (i) linear and log-linear explicit
algebraic models, including power product models (ii) implicit algebraic models
derived from linear, log-linear or power product models (iii) linear and log-linear
models and power product models suggested by special experimental designs.

An explicit algebraic model such as (1.1) can be written down, before one consid-
ers the experimental design. Indeed in areas such as the optimal design of experi-
ments one may choose the experimental design using some optimality criterion. But
the implicit models described above are design dependent as we see from Equation
(1.4). A question arises then: is there a generic way of describing an implicit model
which is not design dependent? The answer is to define a polynomial of total degree
p as an analytic function all of whose derivatives of higher order than p vanish. But
this is an infinite number of conditions.

We shall see that the explicit–implicit duality is also a feature of the information
geometry in the sense that one can consider a statistical manifold as an implicit
object or defined by some parametric path or surface.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-89619-1 - Algebraic and Geometric Methods in Statistics
Edited by Paolo Gibilisco, Eva Riccomagno, Maria Piera Rogantin and Henry P. Wynn
Excerpt
More information

http://www.cambridge.org/9780521896191
http://www.cambridge.org
http://www.cambridge.org


6 The editors

1.3 The uses of algebra

So far we have only shown the presence of algebraic structures in statistical mod-
els. We must try to answer briefly the question: what real use is the algebra?
We can divide the answer into three parts: (i) to better understand the structure
of well-known models, (ii) to help with, or innovate in, statistical methodology
and inference and (iii) to define new model classes exploiting particular algebraic
structures.

1.3.1 Model structure

Some of the most successful contributions of the algebra are due to the introduction
of ideas which the statistical community has avoided or not had the knowledge to
pursue. This is especially true for toric models for categorical data. It is impor-
tant to distinguish two cases. First, for probability models all the representations:
log-linear, toric, power product are essentially equivalent in the case that all prob-
abilities are restricted to be positive. This condition can be built into the toric
analysis via the so-called saturation. Consider our running Example 1.2. If ξ is a
dummy variable then the condition p1p2p3p4v + 1 = 0 is violated if any of the pj is
zero. Adding this condition to the conditions obtained via the kernel method and
eliminating v turns out to be equivalent to directly eliminating the ξ in the power
product (toric) representation.

A considerable contribution of the algebraic methods is to handle boundary cases
where probabilities are allowed to be zero. Zero counts are very common in sparse
tables of data, such as when in a sample survey respondents are asked a large
number of questions, but this is not the same as zero probabilities. But we may in
fact have special models with zero probabilities in some cells. We may call these
models boundary models and a contribution of the algebra is to analyse their com-
plex structure. This naturally involves considerable use of algebraic ideas such as
irreducibility, primary decompositions, Krull dimension and Hilbert dimension.

Second, another problem which has bedevilled statistical modelling is that of
identifiability. We can take this to mean that different parameter values lead to
different distributions. Or we can have a data-driven version: for a given data set
(the one we have) the likelihood is locally invertible. The algebra is a real help in
understanding and resolving such problems. In the theory of experimental design
we can guarantee that the remainder (quotient) models (or sub-models of remainder
models), r(x), are identifiable given the design from which they were derived. The
algebra also helps to explain the concept of aliasing: two polynomial models p(x)
and q(x) are aliased over a design D if p(x) = q(x) for all x in D. This is equivalent
to saying that p(x) − q(x) lies in the design ideal.

There is a generic way to study identifiability, that is via elimination. Suppose
that h(θ), for some parameter θ ∈ Ru and u ∈ Z>0 , is some quantity of interest such
as a likelihood, distribution function, or some function of those quantities. Suppose
also that we are concerned that h(θ) is over-parametrised in that there is a function
of θ, say φ(θ) ∈ Rv with dimension v < u, with which we can parametrise the model
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Algebraic and geometric methods in statistics 7

but which has a smaller dimension than θ. If all the functions are polynomial we
can write down (in possibly vector form): r − h(θ) = 0, s − φ(θ) = 0, and try
to eliminate θ algebraically to obtain the (smallest) variety on which (r, s) lies. If
we are lucky this will give r explicitly in terms as function of s, which is then the
required reparametrisation.

As a simple example think of a 2× 2 table as giving probabilities pij for a bivari-
ate binary random vector (X1 ,X2). Consider an over-parametrised power product
model for independence with

p00 = ξ1ξ3 , p10 = ξ2ξ3 , p01 = ξ1ξ4 , p11 = ξ2ξ4 .

We know that independence gives zero covariance so let us seek a parametrisation in
terms of the non-central moments m10 = p10 +p11 , m01 = p01 +p11 . Eliminating the
ξi (after adding

∑
ij pij −1 = 0), we obtain the parametrisation: p00 = (1−m10)(1−

m01), p10 = m10(1 − m01), p01 = (1 − m10)m01 , p11 = m10m01 . Alternatively, if
we include m11 = p11 , the unrestricted probability model in terms of the moments
is given by p00 = 1 − m10 − m01 + m11 , p10 = m10 − m11 , p01 = m01 − m11 ,

and p11 = m11 , but then we need to impose the extra implicit condition for zero
covariance: m11 −m10m01 = 0. This is another example of implicit–explicit duality.

Here is a Gaussian example. Let δ = (δ1 , δ2 , δ3)� be independent Gaussian unit
variance input random variables. Define the output Gaussian random variables as

Y1 = θ1δ1

Y2 = θ2δ1 + θ3δ2

Y3 = θ4δ1 + θ5δ3 ,

(1.8)

It is easy to see that this implies the conditional independence of Y2 and Y3 given
Y1 . The covariance matrix of the {Yi} is

C =

⎛
⎝ c11 c12 c13

c21 c22 c23

c31 c32 c33

⎞
⎠ =

⎛
⎝ θ2

1 θ1θ2 θ1θ4

θ1θ2 θ2
2 + θ2

3 θ2θ4

θ1θ4 θ2θ4 θ2
4 + θ2

5

⎞
⎠ .

This is invertible (and positive definite) if and only if θ1θ3θ5 �= 0. If we adjoin
the saturation condition θ1θ3θ5v − 1 = 0 and eliminate the θj and we obtain the
symmetry conditions c12 = c21 etc. plus the single equation c11c23−c12c13 = 0. This
is equivalent to the (2,3) entry of C−1 being zero. The linear representation (1.8)
can be derived from a graphical simple model: 2 − 1 − 3, and points to a strong
relationship between graphical models and conditions on covariance structures. The
representation is also familiar in time series as the moving average representation.
See (Drton et al. 2007) for some of the first work on the algebraic method for
Gaussian models.

In practical statistics one does not rest with a single model, at least not until
after a considerable effort on diagnostics, testing and so on. It is better to think
in terms of hierarchies of models. At the bottom of the hierarchy may be simple
models. In regression or log-linear models these may typically be additive models.
More complex models may involve interactions, which for log-linear models may
be representations of conditional independence. One can think of models of higher
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8 The editors

polynomial degree in the algebraic sense. The advent of very large data sets has
stimulated work on model choice criteria and methods. The statistical kit-bag in-
cludes AIC, BIC, CART, BART, Lasso and many other methods. There are also
close links to methods in data-mining and machine learning. The hope is that the
algebra and algebraic and differential geometry will point to natural model struc-
tures be they rings, complexes, lattices, graphs, networks, trees and so on and
also to suitable algorithms for climbing around such structures using model choice
criteria.

In latent, or hidden, variable methods we extended the model top ‘layer’ with
another layer which endows parameters from the first layer with distributions, that
is to say mixing. This is also, of course, a main feature of Bayesian models and
classical random effect models. Another generic term is hierarchical models, espe-
cially when we have many layers. This brings us naturally to secant varieties and
we can push our climbing analogy one step further. A secant variety is a bridge
which walks us from one first-level parameter value to another, that is it provides
a support for the mixing. In its simplest form secant variety takes the form

{r : r = (1 − λ)p + λq, 0 ≤ λ ≤ 1}

where p and q lie in varieties P and G respectively (which may be the same). See
(Sturmfels and Sullivant 2006) for a useful study.

In probability models distinction should be made between a zero in a cell in data
table, a zero count, and a structural zero in the sense that the model assigns zero
probability to the cell. This distinction becomes a little cloudy when it is a cell
which has a count but which, for whatever reason, could not be observed. One
could refer to the latter as censoring which, historically, is when an observation is
not observed because it has not happened yet, like the time of death or failure. In
some fields it is referred to as having partial information.

As an example consider the toric idea for a simple balanced incomplete block de-
sign (BIBD). There are two factors, ‘blocks’ and ‘treatments’, and the arrangement
of treatment in blocks is given by the scheme

(
1
2

) (
1
3

) (
1
4

) (
2
3

) (
2
4

) (
3
4

)

e.g.
(

1
2

)
is the event that treatment 1 and 2 are in the first block. This corre-

sponds to the following two-factor table where we have inserted the probabilities
for observed cells, e.g. p11 and p21 are the probabilities that treatments one and
two are in the first block,

p11 p12 p13

p21 p24 p25

p32 p34 p36

p43 p45 p46
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Algebraic and geometric methods in statistics 9

The additive model log pij = µ0 + αi + βj (ignoring the
∑

pij = 1 constraint) has
nine degrees of freedom (the rank of the X-matrix) and the kernel has rank 3 and
one solution yields the terms:

p12p21p34 − p11p24p32 = 0

p24p36p45 − p25p34p46 = 0

p11p25p43 − p13p21p45 = 0.

A Gröbner basis and a Markov basis can also be found. For work on Markov bases for
incomplete tables see (Aoki and Takemura 2008) and (Consonni and Pistone 2007).

1.3.2 Inference

If we condition on the sufficient statistics in a log-linear model for contingency
tables, or its power-product form, the conditional distribution of the table does not
depend on the parameters. If we take a classical test statistic for independence such
as a χ2 or likelihood ratio (deviance) statistics, then its conditional distribution,
given the sufficient statistics T , will also not depend on the parameters, being a
function of T . If we are able to find the conditional distribution and perform a
conditional test, e.g. for independence, then (Type I) error rates will be the same
as for the unconditional test. This follows simply by taking expectations. This
technique is called an exact conditional test. For (very) small samples we can find
the exact conditional distribution using combinatorial methods.

However, for tables which are small but too large for the combinatorics and not
large enough for asymptotic methods to be accurate, algebraic Markov chain meth-
ods were introduced by (Diaconis and Sturmfels 1998). In the tradition of Markov
Chain Monte Carlo (MCMC) methods we can simulate from the true conditional
distribution of the tables by running a Markov chain whose steps preserve the ap-
propriate margins. The collection of steps forms a Markov basis for the table. For
example for a complete I ×J table, under independence, the row and column sums
(margins) are sufficient. A table is now a state of the Markov chain and a typical
move is represented by a table with all zeros except values 1 at entry (i, i′) and (j, j′)
and entry −1 at entries (j, i′) and (i, j′). Adding this to or subtracting this from a
current table (state) keeps the margins fixed, although one has to add the condi-
tion of non-negativity of the tables and adopt appropriate transition probabilities.
In fact, as in MCMC practice, derived chains such as in the Metropolis–Hastings
algorithm are used in the simulation.

It is not difficult to see that if we set up the X-matrix for the problem then a move
corresponds to a column orthogonal to all the columns of X i.e. the kernel space.
If we restrict to all probabilities being positive then the toric variety, the variety
arising from a kernel basis and the Markov basis are all the same. In general the
kernel basis is smaller than the Markov basis which is smaller than the associated
Gröbner basis. In the terminology of ideals:

IK ⊂ IM ⊂ IG ,
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10 The editors

with reverse inclusion for the varieties, where the sub-indices K, M , G stands for
Kernel, Markov and Gröbner, respectively.

Given that one can carry out a single test, it should be possible to do multiple
testing, close in spirit to the model-order choice problem mentioned above. There
are several outstanding problems such as (i) finding the Markov basis for large
problems and incomplete designs, (ii) decreasing the cost of simulation itself for
example by repeat use of simulation, and (iii) alternatives to, or hybrids, simulation,
using linear, integer programming, integer lattice theory (see e.g. Chapter 4).

The algebra can give insight into the solutions of the Maximum Likelihood Equa-
tions. In the Poisson/multinomial GLM case and when p(θ) is the vector of proba-
bilities, the likelihood equations are

1
n

X�Y =
1
n

T = X�p(θ),

where n =
∑

xi
Y (xi) and T is the vector of sufficient statistics or generalised mar-

gins. We have emphasised the non-linear nature of these equations by showing that
p depends on θ. Since m = X�p are the moments with respect to the columns of
X and 1

n X�Y are their sample counterpart, the equations simply equate the sam-
ple non-central moments to the population non-central moments. For the example
in (1.1) the population non-central moments are m0 = 1, m1 =

∑
i pixi, m2 =∑

i pix
2
i . Two types of result have been studied using algebra: (i) conditions for

when the solution have closed form, meaning a rational form in the data Y and
(ii) methods for counting the number of solutions. It is important to note that
unrestricted solutions, θ̂, to these equations are not guaranteed to place the proba-
bilities p(θ̂) in the region

∑
i pi = 1, pi > 0, i = 1, . . . , n. Neither need they be real.

Considerable progress has been made such as showing that decomposable graphical
models have a simple form for the toric ideals and closed form of the maximum
likelihood estimators: see (Geiger et al. 2006). But many problems remain such
as in the study of non-decomposable models, models defined via various kinds of
marginal independence and marginal conditional independence, and distinguishing
real from complex solutions of the maximum likelihood equations.

As is well known, an advantage of the GLM formulation is that quantities which
are useful in the asymptotics can be readily obtained, once the maximum likelihood
estimators have been obtained. Two key quantities are the score statistic and the
Fisher information for the parameters. The score (vector) is

U =
∂l

∂θ
= X�Y − X�µ,

where j = (1, . . . , n)� and we recall µ = E[Y ]. The (Fisher) information is

I = −E
[

∂2 l

∂θi∂θj

]
= X�diag(µ)X,

which does not depend on the data.
As a simple exercise let us take the 2 × 2 contingency table, with the additive

Poisson log-linear model (independence in the multinomial case representation) so
that, after reparametrising to log µ00 = θ0 , log µ10 = θ0 + θ1 , log µ01 = θ0 + θ2 and
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