Index

AAO. See Antarctic Oscillation
Accuracy, 12, 55, 128, 133
buoys vs ship SST, 171
datasets, in, 30
model, in, 241
relative IR vs microwave satellite, 161
temperature observations, 128
Acidification
ocean, 120
impacts, 120
Advanced Microwave Scanning Radiometer, 196
Advanced Microwave Scanning Radiometer-Earth
Observing System
AMSR-E, 196
Advanced Very High Resolution Radiometer, 216,
221
Advection
sea ice, 204
vorticity, 75
Aerosols, 9, 22, 51, 122, 223
in models, 236
NDVI observations, influence on, 222
sst observations, influence on, 173
volcanic, 112
Agents
biosphere, 7
forcing, 1, 7
Aircraft
drones, 46
observations, 71, 130, 150, 195, 214
Albedo, 5, 52
aerosols, 112
cloud, 226
global analysis, of, 225
in radiation budgets, 226
sea ice, 5
snow, ice, 6, 14, 59, 111, 193, 201
sulfate, 9
vegetation, 10
Algorithm, 30, 50, 53, 151, 153, 158
precipitation estimates, 158, 160, 162–163
radiation budget, 242
verification, of, 242
AMIP, Section 11.5.1
AMOC, 100, 102, 113
Analysis/forecast systems, 54, 59
Annual Cycle, 8, 12–13, 28, 85, 293
climatic change, 104, 106
CO2, 11, 115
equatorial Pacific SST, 268
Hadley circulation, 69
land surface temperature, 85
Mediterranean, 230
numerical models, in, 235, 245
precipitation, 66, 85, 160
sea ice
Antarctic, 204
Arctic, 203
sea level pressure, 79
sea surface temperature, 82, 85
snow, 205
solar radiation, 52
variance, 95, 101
vegetation, 213
velocity potential, 76
water budget, 224
Antarctic Oscillation (AAO), 94
Arabian Sea, 73
Arctic Oscillation (AO), 94, 202
Argo
floats. Section 8.5.1.2
Asian Monsoon, 73, 76, 89
ASOS, 47, 128, 191, 193
Assimilation, 50, 234
data, 27, 54
Argo, 185
constrained models, 235
ECMWF, 56
JMA, 56
NASA GMAO, 56
NASA MERRA, 57
NOAA CFSR, 57
precipitation, 58
data constraints in climate models, 54
Global Ocean Data Assimilation System
(GODAS), 60
Land Data Assimilation Systems LDAS, 227–228
radiances, 236
systems, 42, 48
Atlantic Meridional Owing Circulation.
See AMOC
Atlantic Multi-decadal Oscillation
AMO, 101
ATLAS buoys, 185
Atmospheric Model Inter-comparison Project, 175
Atmospheric Radiation Measurement (ARM) Program, 220, 222
ARM Mobile Facilities (AMF), 223
Australasian Monsoon, See Asian Monsoon
Australian Bureau of Meteorology (BoM), 263
AVHRR, See Advanced Very High Resolution Radiometer
AWOS, 128, 281
Balloon, 256
early observations, 44
instrumented, See radiosondes
pilot, 44
Barometer, 42
Baseline Surface Radiation Network (BSRN), 222
Bathythermograph
expendable
XBT, 182
Beaufort
sea, 202
wind scale, 71
Beaufort, Francis, 71
BHO, See Blue Hill Observatory
Bias, 45, 246–247
buoys
ATLAS vs TRITON, 186
corrections, 30, 134, 175
data, 27
example, 33–34
instrument change
example, 136
minimizing, 81
in models, 61
precipitation
radiator vs gage, 163
satellite vs gage, 164
satellite vs models, 165
reduction in climate monitoring, 280
satellite
beam filling, 153
precipitation, 162
sea ice concentration, 197
sea surface temperature
adjustments, 174
bucket, 170
corrections, 170
satellite vs in situ, 82, 112, 170, 173
sunshine duration, 223
temperature
location change, 134
trends, 140
XBT
adjustments, 182
descent-rate, 182
Biome, 215
Biosphere, 7, 114
Bjerknes, 95, 97, 187
Blocking, 91
Blue Hill Observatory (BHO), 280
Boreal Ecosystem–Atmosphere Study (BOREAS), 228
Boreal summer precipitation, 85
Boundary conditions, 235
in early climate models, 237
in reanalysis, 59
for regional models, 245
Boundary layer, 59, 168, 185
Brazilian National Institute of Space research (INPE), 264
Breeze
land, 13, 212
mountain/valley, 211
sea, 13, 211
British Antarctic Survey, 199
Budget calculations, 37
residual, 37
Budget momentum, radiation, water, energy.
Section 2.5, Appendix D
Bulletin
American Meteorological Society, 267
Climate Diagnostics, 93, 258
Weekly Weather and Crop, 221
Buoy networks
PIRATA, 171
RAMA, 171
TAO/TRITON, 171
Buys
Global Drifter Program (GDP), 171
moored, 171
Cambrian, 111
Canadian Meteorological Center, 275
Canonical Correlation Analysis (CCA), 166
Carbon cycle, 15, 213, 220
Carbon dioxide, 9, 15, 51, 107, 115, 120, 213, 259
Center for Satellite Applications and Research (STAR), 259
Center for Weather Forecasting and Climate Studies (CPTEC)
Brazil, 276
CESM
Community Earth System Model, 237
CFCs, See Chloroflourocarbon
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorofluorocarbon stratosphere</td>
</tr>
<tr>
<td>ozone depletion, 10</td>
</tr>
<tr>
<td>Chlorophyll, 156</td>
</tr>
<tr>
<td>ocean color, 179</td>
</tr>
<tr>
<td>plant, 221</td>
</tr>
<tr>
<td>CIIPIN, See International Center for the Investigation of El Niño</td>
</tr>
<tr>
<td>Climate Anomaly Data Base (CADB), 253</td>
</tr>
<tr>
<td>Climate applications, 40, 159, 279</td>
</tr>
<tr>
<td>Climate Assessment, 267</td>
</tr>
<tr>
<td>Climate change abrupt, 124</td>
</tr>
<tr>
<td>Climate Change Initiative Land Cover Project ESA, 216</td>
</tr>
<tr>
<td>Climate Data Guide NCAR/UCAR, 38, 58</td>
</tr>
<tr>
<td>Climate Data Records, 255</td>
</tr>
<tr>
<td>Climate Diagnostics Center, 258</td>
</tr>
<tr>
<td>Climate Diagnostics Database (CDDB), 257</td>
</tr>
<tr>
<td>Climate Diagnostics Workshop, 19</td>
</tr>
<tr>
<td>Climate Divisions, 137, 281</td>
</tr>
<tr>
<td>Climate enterprise, 281, Section 12.4.2</td>
</tr>
<tr>
<td>Climate forecast history in the U.S., 265–267</td>
</tr>
<tr>
<td>history of, 41</td>
</tr>
<tr>
<td>Climate Forecast System NCEP, 57, 259</td>
</tr>
<tr>
<td>NCEP v2, 57</td>
</tr>
<tr>
<td>Climate model data PCMDI, 25</td>
</tr>
<tr>
<td>diagnostics, Section 11.5 simulations</td>
</tr>
<tr>
<td>constrained vs unconstrained, Section 11.2.2</td>
</tr>
<tr>
<td>unconstrained, 235</td>
</tr>
<tr>
<td>Climate models as data sources, 17</td>
</tr>
<tr>
<td>Climate monitoring. See Chapter 12</td>
</tr>
<tr>
<td>Climate Prediction Center, 25, 57</td>
</tr>
<tr>
<td>Climate Prediction Center Merged Analysis of Precipitation (CMAP), 161</td>
</tr>
<tr>
<td>Climate records, 24</td>
</tr>
<tr>
<td>proxy, 100, 110</td>
</tr>
<tr>
<td>Climate services, 61, 263, 279–280</td>
</tr>
<tr>
<td>Climate Services Partnership (CSP), 265</td>
</tr>
<tr>
<td>Climate shift, 101</td>
</tr>
<tr>
<td>Climate system component, 3, 7 in reanalysis, 59</td>
</tr>
<tr>
<td>Climatic Research Unit (CRU) U of East Anglia, 158, 253</td>
</tr>
<tr>
<td>Climatology, 19, 22</td>
</tr>
<tr>
<td>CLIVAR, 264</td>
</tr>
<tr>
<td>Clouds, 47, 51</td>
</tr>
<tr>
<td>contamination, 37</td>
</tr>
<tr>
<td>ISCCP, 52</td>
</tr>
<tr>
<td>satellite precipitation estimates, in, 150</td>
</tr>
<tr>
<td>CloudSat, 165 precipitation estimates, 178</td>
</tr>
<tr>
<td>CMIP, 243–244</td>
</tr>
<tr>
<td>CMORPH, 163–164. See CPC MORPHing Analysis</td>
</tr>
<tr>
<td>COADS, See ICOADS</td>
</tr>
<tr>
<td>Coherent climate variations, 113 in models, 121</td>
</tr>
<tr>
<td>Coherent patterns. See Modes</td>
</tr>
<tr>
<td>Cold cloud frequency precipitation estimate, 150–151</td>
</tr>
<tr>
<td>Cold episodes, 98, 201</td>
</tr>
<tr>
<td>La Niña, 95</td>
</tr>
<tr>
<td>Cold tongue, 82</td>
</tr>
<tr>
<td>Committee on Earth Observation Satellites, 265</td>
</tr>
<tr>
<td>Copernicus Climate Change Service, 262</td>
</tr>
<tr>
<td>Copernicus program, 278</td>
</tr>
<tr>
<td>Sentinel satellites, 262</td>
</tr>
<tr>
<td>Core Observatory Global Precipitation Measurement, 155</td>
</tr>
<tr>
<td>Core Research for Evolutional Science and Technology (CREST), 164</td>
</tr>
<tr>
<td>Coriolis force, 67, 82</td>
</tr>
<tr>
<td>Correlation. See Appendix A</td>
</tr>
<tr>
<td>Cotton region shelter, 128</td>
</tr>
<tr>
<td>Coupled climate models, 61, 181, Section 11.2.3</td>
</tr>
<tr>
<td>AMOC, 101</td>
</tr>
<tr>
<td>assimilation of Argo data, 185</td>
</tr>
<tr>
<td>ENSO, 121</td>
</tr>
<tr>
<td>ocean-atmosphere-land, 227–228</td>
</tr>
<tr>
<td>Coupling, 3, 6, 17, 65</td>
</tr>
<tr>
<td>biological, chemical, 178</td>
</tr>
<tr>
<td>ENSO, 95, 97</td>
</tr>
<tr>
<td>Global Land-Atmosphere Coupling Experiment (GLACE), 228</td>
</tr>
<tr>
<td>lack of, 95</td>
</tr>
<tr>
<td>in models, 235</td>
</tr>
<tr>
<td>ocean/atmosphere in the MJO, 102</td>
</tr>
<tr>
<td>troposphere/stratosphere in the QBO, 98</td>
</tr>
<tr>
<td>CPC. See Climate Prediction Center</td>
</tr>
<tr>
<td>CPC MORPHing Analysis precipitation estimates, 162</td>
</tr>
<tr>
<td>Crop Moisture Index (CMI), 231</td>
</tr>
<tr>
<td>Crustal plates, 110</td>
</tr>
</tbody>
</table>
DAAC. See NASA Distributed Active Archive Center

Datasets
climate monitoring
land/ocean, 258–259
reanalysis, 258
satellite, 259–260
upper air, 256–258
four-dimensional, 40
global, 40, 63, 107, 136
gridded, 26, 53, 140, 239, 252
popular, 141
reanalysis, 278
gridded model output, 245

Earth System Grid Federation, 244
satellite
NASA/EOSDIS, 179

Decadal variability, 100
influence of, 125
role of subsurface ocean observations, 181
snow cover, 202
use of blended SST data, 175
use of reconstructed SST data, 177

Deep ocean, 4
AMOC
overturning, 100
currents
density gradients, 180
ice melting, influenced by, 121
influences, on the atmosphere, 181

Defense Meteorological Satellite Program (DMSP)
SSMI instrument, 153

Deforestation, 10, 114, 214

Digital Elevation Model, 214

Dipole
Atlantic, 186
Indian Ocean, 186

Diurnal cycle, 13, 34, 48, 65
in models, 241
sampling by satellite, 152, 160

SST, 171

Divergence, 75–76, See Appendix B
moisture, 224

Downscaling, 245

Drifting buoys, Section 8.2.2.2

Dropsondes, 46

Drought, 228–229, Section 10.8
multi-year, 100
Sahel, 20, 100
types, 229
water cycle, 15
western Africa, 10

Drumlins, 198

Dual-frequency Precipitation Radar (DPR), 155

Earth Explorer
satellites, 262

Earth Radiation Budget Experiment, 52

Earth System Grid Federation (ESGF), 244

ECMWF, 36, 53, 55, 61
activities, 262
CERA-20C, 61
ERA-20C, 61
ERA-5, 61
history, 260

Ekman transport
sea ice, 205
water, 82

El Niño, 16, 168, Section 4.3.4.1, See ENSO
coupled oscillation, 65
historical, 85
indices, 268
El Niño/La Niña
monitoring, 276

Electronically Scanning Microwave Radiometer (ESMR), 196

Energy cycle, 15

Ensemble Kalman Filter, 58

ENSO, 16–17, 93, Section 4.3.4.1
components, 97
discussions, 276
El Niño Southern Oscillation, 16
evolution, 97
history, 95
ice core record, in, 206
interactions with other climate modes, 101
in models, 121
monitoring, 185
NINO indices, 268
precipitation and temperature, associated with, 97
precipitation, influence on, 38
predictions, 266, 276
Regional Climate Outlook Forums, 277
time scales, associated with, 90
variance, associated with, 95

Envisat
ERS-1,ERS-2, 261

Equator-crossing time
drift, 221
ERA-20C, 61
ERA-20CM, 61
ERA-CLIM, 61
ERA-CLIM2, 61

Erratics, 198

Eruptions See Volcanoes
volcanic, 1, 9
aerosols, 22
ash, 51
cooling, 198
data, 113
dust, 205
Eruptions (cont.)
sulphur dioxide, 112
surface temperature, 112
EUMETSAT, 261–262
European Centre for Medium Range Weather Forecasts. See ECMWF
European Community, 61, 165, 255, 260, 262, 278
European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), 61
European Space Agency (ESA), 216, 261, 278
soil moisture, 220
Evaporation, 4, 15, Appendix D
agricultural drought, 229
excess, in models, 240
measurements
lysimeter, 218
ocean salinity, 180
from rain gages, 148
salinity estimates, 156
snow water equivalent estimates, in, 192
soil moisture estimates, in, 213
water budget, in, 37, 224
water budget, in, 145
Water vapor, 43
wet bulb temperature, 43
Evapotranspiration, 37, 156, 213
Federal Aviation Administration, 128, 191
Feedback, 5
defined, 6
ice-albedo, 14, 111
loop, 111
in models, 237
negative, 6
negative, 6
ocean-atmosphere MJO, 102
water vapor
positive, 124
Ferrel cell, 68
Field capacity, 213, 216
Field experiment
HAPEX, 228
ISLSCP
FIFE, 228
FIRE, 228
Filtering
of data, 27
Flood
Nile, 66, 107
Flux corrections
in models, 237
Food and Agriculture Organization (FAO), 216
Forcing
external, 1
human, 8
solar, 6
Forecast
artificial skill, 272
climatology, 266
monthly/seasonal
CAC, 266
persistence, 266
weather, 20, 35, 40
analysis, 41
early, 42
models, 53
numerical, 27
operational, 48
Fossil fuel, 11
burning, 10–11, 15, 107, 114
CO2 residence time, 116
Fourier analysis. See Appendix A
Freeboard floating ice, 197
Freeze/thaw dates
Lakes, ponds, rivers, 200
Frequency
distribution
precipitation, 230
of independent observations, 106
of observations, 131
data, 90
of occurrence, 21
histogram, 21
radars, in
shift, 47
radio
RF, 51
rainfall. See Box 11.1
sampling, 25, 27
Frequency distribution. See Appendix A
Fresh water flux, 178, 181
Frost point, 43
Gamma distribution, 22, 230
General circulation, 35, 66–67, 69, 71
General Circulation Project, 53, 257
GEO. See Orbit: Geostationary
Geologic
eras
Paleozoic, Mesozoic, Cenozoic, 110
Phanerozoic eon, 109
Geological Survey (USGS), 214
Geopotential height, 40, 256–257, 265
GEOS-5
NASA
MERRA, 57
Geostationary Operational Environmental Satellite
GOES, 160
GOES-EAST and GOES WEST, 261
German Weather Service
Deutscher Wetterdienst, 158
GHNC. See Global Historical Climatological Network

Glacial period, 106
rebound, 120
Glaciers, 121, 189, 197
calving, 199, 206
mass balance, 199
mountain, 120
movement, 199
Global Argo Data Repository (GADR), 184
Global Atmospheric Research Program GARP
First GARP Global Experiment (FGGE), 261
Global Change Master Directory, 228
Global Change Research Program (GCRP), 55
Mission to Planet Earth (MTPE), 189, 197
NASA, 259
Global Climate Observing System (GCOS), 264, 279
Global Earth Observing System of Systems (GEOSS), 279
Global Energy and Water Exchanges Experiment (GEWEX), 228
Global Energy and Water Exchanges (GEWEX), 264
radiation project, 226
Global Historical Climatological Network (GHNC), 133
Global Land Cover Facility (GLCF), 216
Global Land-Atmosphere Coupling Experiment (GLACE). See Coupling
Global Modeling and Assimilation Office (GMAO), 56
NASA, 57
Global Ocean Data Assimilation Experiment (GODAE), 184
Global Precipitation Climatology Centre (GPCC), 264
Global Precipitation Climatology Project (GPPC), 161
Global Precipitation Climatology Project (GPPC), 161
Global Telecommunications System (GTS), 33
Global temperature and coastal sea level, 119
data for monitoring, 254
data for analysis, 139
real time monitoring, 128
role of sea surface temperature, in, 253
time series, 15, 25
anomaly, 109
history, 117
as an Index of climate change, 118
proxy, 110
volcanoes influenced by, 112
Global temperatures
ENSO
influenced by, 114
Global wind patterns, 35, 66, Section 4.1
GMAO, 57. See Global Modeling and Assimilation System Office
NASA, 57
GOES Precipitation Index (GPI), 160
GRACE, 52
Gravity Recovery and Climate Experiment (GRACE), 52
NASA, 156
groundwater storage, 225
ice sheet mass, 199
Gravity waves, 98
Greenhouse effect, 9
runaway, 124
scenarios
IPCC, 125
ocean acidification, 120
Greenhouse gas, 9, 11, Section 5.6.2
Carbon dioxide (CO2), 10
CFCs, 10
methane, 10, 15, 116
animal sources, 123
permafrost, 201
observations
history, 115
projected changes, 124
water vapor, 117
Grid Analysis and Display System (GrADS), 292
Grid area, 26, 36, 141–142
digital elevation maps, 214
versus grid points, 239
observation vs model grids, 239
probability density functions, 239
represent averages or indices, 239
snow cover, 193
Gridded temperature, 140
GSFC. See Goddard Space Flight Center
Hadley cell, 67–69
Hadley Center, 187, 254
Halley, 67
Heat island
urban, 140
Heat waves, 90, 125, 254
Histogram. See Appendix A
defined, 21
grid vs station, 142
theoretical precipitation, 230
Holocene
geologic epoch, 110
Hovmöller diagram, 268
Index

Humans
and climate, 8–9
land surface, altering, 209, 213
Humidity, 41
absolute, 43
dew point, 43
laboratory measurement, 43
relative, 43
specific, 43
weather station observations, 42
Hydrofluorocarbons
HFCs
ozone depletion, 123
Hydrological cycle. See Water cycle
Ice caps, 5, 11, 15, 110, 119, 189, 198–199, 251, 261
Ice cores, 11, 15, 32, 100, 108, 122, 198, Section 9.6.4
CO2 in bubbles, 111, 116
dust, 198
isotopic concentrations, 205
Ice sheets, 5, 52, 121, 189, 198
mass balance, 199
melting, 206
monitoring
GRACE, ICESat, 199
Icebergs, 189, 199, 206
monitoring, 199
IIP, 199
ICOADS, 174, 254
International Comprehensive Ocean-Atmosphere
Data Set, 169
Illinois State Water Survey (ISLS), 219
Index cycle, 91
India Meteorological Department (IMD), 263
Indian Ocean Convergence Zone (IO CZ), 89
Indices
circulation, 268
climate monitoring, 93, 121
cryospheric, 189
drought, 229
ENSO, 268
NAO, 93
NINO1&2, 268
NINO3.4, 268
NINO4, 270
Ocean NINO Index (ONI), 268
Southern Oscillation, 95
Infrared
radiation, 51
Initial conditions, 27, 41, 53, 57, 60, 138, 237
for ensemble forecasts, 266
Land Surface Models, in, 227
mismatch, 240
satellite based, 260
INMET. See Brazilian Weather Service
Insolation
solar, 9, 105
Instrumental records
duration for AMOC studies, 100
overlap with proxy data, 108
Instruments
infrared, 150, 173
pyrogeometers, 222
VIIRS, 222
passive microwave, 152–153, 196
pyrheliometers, 222
pyrometers, 222
visible, 221–222
Integrated Climate Data Center (ICDC), 212, 216
Interannual climate variability
ENSO, 95
monitoring, 267
Interglacial period, 106, 110, 206
Intergovernmental Panel on Climate Change (IPCC), 125, 243, 264
Internal
feedback, 105
interactions, 64, 105
modes, 95
variability, 105
Internal climate variations. See Modes
International Center for the Investigation of El Niño
(CI IFIN), 264
International Geosphere-Biosphere Program (IGBP), 216
International Precipitation Working Group (IPWG), 160
International Research Institute for climate and
society (IRI), 25, 264, 275
maprooms, 260, 264
International Satellite Land Surface Climatology
Project (ISLSCP), 228
International Soil Moisture Network (ISMN), 219
International Surface Pressure Databank (ISPD), 256
Inter-Tropical Convergence Zone (ITCZ), 89
Intraseasonal climate variability, Section 4.3.1
IPCC
AR-5, 11
Assessment Reports. See Box 5.1
cryospheric schematic, 190
pre-industrial CO2, 116
Third Assessment Report, 3
IRI/LDEO Data Library, 85, 98, 119, 269, 272, 293
Irradiance
Integrated Surface Irradiance Study (ISIS), 222
total solar (TSI), 8, 14, 110
Isobars, 2, 43
Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), 185
Japan Meteorological Agency (JMA), 55, 263
JMA Climate Data Assimilation System (JCDAS), 56
Japan Science and Technology Agency (JST), 164
Jason. See Ocean topography
Jet stream, 65, 71
ENSO influence on, 97
Southern hemisphere, 73
Jet streams, 69
Joint Polar Satellite System (JPSS), 164
K. Wyrtki, 95
Keeling Curve
CO2, 11
Keeling, Ralph, 11
La Niña, 16, 96
impacts, 104
precipitation pattern, 99
Lake ice, 200
Land cover. See Land type
Land Long-Term Data Record, 222
Land surface models, 59, 210, 220, 227
Noah and VIC, 228
Land Surface Models and Data Assimilation Systems, Section 10.7
Land Surface Types
MODIS, 216
Land type, 210, 212, Section 10.2.3
NASA Land Cover Types, 215
Land use, 217
changes
influence of, 34
Landsat, 216
land use categories, 217
LDAS. See Land Data Assimilation System under Assimilation
Leaf Area Index (LAI), 221
Leeside trough, 211
LEO. See Orbit:Low Earth
Little Ice Age, 190, 198
Living Planet program
European Space Agency, 261
Madden-Julian Oscillation (MJO), 16
and ENSO, 102
influence of, 85
period, 91
RAMA, 186
Mathematical models, 2, 4, 40, 62
analysis revolution, 248
output data, 234
precipitation estimates radar, 154
radiiances, 50
Maunder Minimum. See Sunspot cycle
Mean seasonal cycle, 22, 64, Section 4.2
Memory, 3
Metadata, 32
at archive centers, 34
at NCEI, 133
weather station elevation, 214
Meteorological Operational (METOP) satellite program, 261
Meteosat, 261
Meteosat Second Generation (MSG), 261
Microclimate, 4, 10, 31, 130, 201
averaged in grids, 239
Milankovich cycles, 8
Model climate. Section 11.2.1 and 11.2.2
Model validation. Section 11.4
Model verification, 163
Moderate Resolution Imaging Spectroradiometer MODIS, 216
Modern-Era Retrospective Analysis for Research and Applications. See Reanalysis, NASA, MERRA
Modes. See AO, AAO, NAO, ENSO, PNA, MJO, QBO
in climate models, 245
of climate variability, 22, 90, 245
indices, 268
Monsoon, 73
global velocity potential, 76
Indian, 251
prediction, 251
precipitation, 89, 95, 101
prediction, 263
ridge, 76
Monte Carlo testing. See Appendix A
Montreal Protocol, 10, 123
Moraines, 198
Multi-decadal climate variability. Section 4.3.4.3
Multi-Model Ensembles (MMEs), 266
National
NMMF, 275
NAO index, 93
NASA
Data Assimilation Office, 54, 56
Distributed Active Archive Center (DAAC), 25, 267
Global Precipitation Measurement (GPM) Mission, 162
Goddard Institute for Space Studies (GISS), 253
Goddard Space Flight Center (GSFC), 56
NASA/NOAA National Polar-orbiting Partnership satellite
Suomi satellite, 222
National Centers for Environmental Information (NCEI). See NOAA
NOAA
Atlantic Oceanographic and Meteorological Laboratory, 182
Climate Analysis Center (CAC), 252
Earth System Research Laboratory (ESRL), 258
Geophysical Fluid Dynamics Laboratory (GFDL), 35, 275
Long Range Prediction Group (LRPG), 252
NCEI
Global Historical Historical Network (GHCN), 253
Pacific Marine Environmental Laboratory (PMEL), 185
Noah LSM. See Land surface models
Normalized Difference Vegetation Index (NDVI), 156, 221–222
North American Monsoon, 89
North American Soil Moisture Database (NASMD), 219
North Atlantic Oscillation (NAO), 20, 65, 202, 268
Northern Annular Mode. See Arctic Oscillation
Nowcast, 252
Numerical models. Section 2.4.1
Numerical weather prediction, 19
data assimilation, in, 237

Observations
aircraft, 44, 46
atmospheric, 40, See Chapter 3
monitoring, 251
cloud, 47
satellite, 52
iceberg, Section 9.3.2
in situ
advantages of, 46
disadvantages, 174
ocean, 182
soil moisture, 231
infrared
precipitation, 150
SST, 173
vegetation, 221
kite, 44
microwave, 51, 152
active, 197
passive, 152–153
sampling, 152
passive
salinity, 156
permafrost, Section 9.5
precipitation, 34, 146
datasets, 254
pressure
sea level, 255
radiation, 223
radio occultation
gravity, 52
salinity
Argo, 182
sea ice
historical, 196
thickness, 197
sea surface temperature (SST), Section 8.2.2
sunshine, 223
temperature
land, 127
Ocean
heat content, 186
mixed layer, 169, 272
sea level, 107, Section 5.6.3 Sea Level
topography, 178
accuracy, 178
Ocean color, 114, 179
Ocean currents
Agulhas, 180
Benguela, 180
California, 180
deep, 179
Gulf Stream, 178, 180
Humboldt, 180
Kuroshio, 178
Ocean Observatories Initiative (OOI), 258
Optimal
averaging. See Appendix A
climatic normals, 266
climatic observing system, 280
ORAS4. See Reanalysis, ECMWF, Ocean
Reanalysis System 4
Orbit
geostationary, 48
low Earth, 48
precessing, 152
sun synchronous, 150
outgoing longwave radiation (OLR), 160
Outgoing Longwave Radiation (OLR), 91, 269
Outlier, 27
Ozone
greenhouse effect, 123
ground level, 123
stratospheric, 10, 123, 259
UV radiation, 123
Ozone hole, 123
Pacific Decadal Oscillation (PDO), 101
Pacific North American (PNA) pattern, 93
ENSO, 93
Paleozoic. See Geologic eras
Palmer Drought Severity Index (PDSI), 230
Parameter-elevation Regressions on Independent
Slopes Model (PRISM), 141, 159
Parameterizations, 23, 30, 228, 241–243
Pathfinder program, 222
Period of record, xiii, 25, 31
active microwave data, of, 197
assimilation, for, 54
environmental changes, 35
input data
reanalysis, in, 244
precipitation analysis, in, 157
 trends over, 90
TRMM data, 163
Permafrost, 189
Phase locking
ENSO, 97
Photosynthetically Active Radiation (PAR), 221
Pixel. See Satellite data
Plate tectonics, 109
Polynya, 204
Precambrian, 109
Precipitation
analysis
CADB vs GHCN, 254
CMAP, 161
gage-based, 157
GPCP, 163
IMERG, 162
merged, 161
PERSIANN, 162
remote, 159, Section 7.3.2
remote and gage-based. Section 7.3.3
satellite-based radar, 162
surface-based radar, 155, 160
TRMM radar, 154
convective, 69, 92
estimates, 254
example, 274
GSMaP, 162
passive microwave, 151
quantitative, 160
radar, 153
soil moisture, 156
surface properties, from, 155
high-latitude, 153
model estimates, 156
orographic, 153
remotely sensed, Section 7.2.2
statistical distributions, 230
Precipitation Intercomparison Project (PIP), 161
Precision, 128
Predictability
limits, 265
Prediction and Research Moored Array
in the Tropical Atlantic (PIRATA), 186
Pressure
sea level, 42, 255
sea level vs surface, 79
surface, 61, 79
Process cycle, 12, 14, Section 1.5.2
Profile
atmospheric
Occultation of Global Positioning System radio waves, 52
radiosonde, 57
satellite, 236
atmospheric properties, 52
land
soil properties, 216
oceanic
salinity, 179
temperature, 182
spectral
blackbody, 50
solar radiation, 8
standard
atmospheric, 79
vertical
precipitation, of, 154
Program for Climate Model Diagnosis and Intercomparison (PCMDI), 25
Pseudo-observations, 236
Psychrometer, 43
Public good, 279
Quasi-Biennial Oscillation (QBO)
stratospheric, 98
tropospheric, 99
Radar
altimeters, 120
frequency, in, 47
precipitation estimates, 149, See Chapter 7 – Radar (Active Microwave) Methods
satellite, 51
vertically pointing, 47
Radar (RAdio Detection And Ranging), 47
Radiances, 50, 236
Radiation
Earth’s emitted, 7
reflected. See Albedo
solar, 8
incoming, 110
reflected, 222, 226
Total Solar Irradiance (TSI), 8
top of Earth’s atmosphere, 8
Radiometer, 48
precipitation remote sensing, 149
Radiosondes, 44, 53, 70, 102, 224, 257
limits, 46
Rain gage. See Section 7.2.1
tipping bucket, 148
weighing, 147
Index

RAMA
Research Moored Array for Africa – Asian –
Australian Monsoon Analysis and Prediction, 186
Random error, 27
Rawinsondes, 45
RCOF. See Regional Climate Outlook Forum
Reanalysis, 20, 24, 36, 58
Arctic system
ASR, 58
ECMWF
ERA-15, 55
ERA-40, 55–56
ERA-interim, 56
Ocean Reanalysis System 4, 60
ESRL
20CR, 58
JMA
JRA-25, 55
JRA-55, 56, 60
NASA
GMAO, 56
MERRA, 57
NCEP
CFSR, 57, 61
NCEP/NCAR
version1, 55
version2, 55
other components, 40–60
regional
NARR, 58
Reconstruction
methodology. See Box 7.1
precipitation. Section 7.4
sea surface temperature, 176
Regional Climate Centers (RCC), 277
Beijing Climate Center, 264
Regional Climate Outlook Forums (RCOFs), 277
Representativeness error, 236
Resolution
requirements
rain gages, 157
satellite
second generation, 163
satellite observations
LEO, 48
spatial, 61
Arctic reanalysis, 59
GEO precipitation, 151
global temperature, 109
LEO satellites, 150
rain gages, 162
reanalysis, 55–57, 61
regional reanalysis, 58
satellite cloud data, 150
satellite microwave, 152
temperature, 140
spatial and temporal, 40
precipitation, 161
reanalysis, 58
Resolution 40
World Meteorological Organization, 24
Resolution 60
World Meteorological Organization, 138
Rocketsonde, 46
Russian Arctic and Antarctic Research Institute, 199
Rutgers Global Snow Laboratory, 194
Salinity, 113
currents
transfered by, 177
Mediterranean Sea, 180
precipitation
proxy, 147
satellite estimates, 156
variations, 181
Samples
independent, 27, 29
Satellite Application Facilities (SAFs), 261
Satellite data, 27, 30, 36–37
assimlated in models, 54
corrections, 36
pixels, 37
spatial resolution, 36
Satellites
Earth orbiting, 8, 36, 48, 149, 154
orbits. See Orbit
Sea ice, 5, Section 9.2 Sea Ice Data and
Observations
analyses, 196
Arctic extent
decreases, 120
boundary, 175
congestion, 196
ERA-20CM
boundary forcing, 61
extent
satellite observations, 196
fast, 195
freezing point, 175
historical observations, 195
leads and polynyas, 195
reanalysis, 59
satellite estimates of, 50
thickness, Section 9.22
variations
albedo, 189
Sea level. See Ocean topography
measurements. See Tide gages
Sea surface temperature, 20, Section 8.2
bucket vs intake, 170
daily, 36
datasets, 253
defined, 169
index, 29
influence, 59
monitoring, 271
reconstructed ERSST, 177
satellite, 173
sea ice, 196
seasonal cycle. Section 4.2.3
spatial scale, 29
Seasonal cycle. See Annual cycle
Ship tracks, 171
Simulations. Section 11.2.1
model, 23
Sinks
in budgets, 37
Sir Gilbert Walker, 92, 247
Siting
precipitation gages, 149
Skewed distribution, 21
SNOTEL
Snow Telemetry observing network, 192
Snow
depth, 192
falling
microwave estimates, 165
fim, 197
lake effect, 200
liquid water equivalent. See Snow Water Equivalent
snow course, 192
snowfall, 193
snowpack. Section 9.1.3 Basin Snowpack
Snow cover
variability. Section 9.6.1
Snow Water Equivalent. Section 9.1.4
Snowboard. Section 9.1.1 Snowfall
Soil Climate Analysis Network (SCAN), 219
Soil moisture. Section 10.5.1
in budgets, 224
conductivity, 218
definitions, 213
drought monitoring, 228, 230
empirical modeling of, 231
measurements
direct, 218
gravimetric, 218
lysimeter, 218
neutron, 219
monitoring
USCRN, 280
Natural Resources Conservation Service (NRCS), 219
precipitation proxy, 147, 156
SNOTEL observations, 192
Soil Moisture Operational Products System (SMOPS), 220
Soil properties, 212
Soil Water and Temperature System (SWATS), 220
Solar constant, 8, 112
Sources
in budgets, 37
South Atlantic Convergence Zone (SACZ), 89
South Pacific Convergence Zone (SPCZ), 89
Southern Annular Mode (SAM). See Antarctic Oscillation
Southern Oscillation. See ENSO
Special Sensor Microwave/Imager (SSM/I), 153
Spin-up
model, 235
SST. See Sea surface temperature
Stan Hayes, 185
Standard Rain Gage, 148
Standard Solar Model, 110
State of the Climate
AMS Bulletin, 267
Station pressure
corversion to sea level pressure, 42
Stationarity, 30
Statistical significance. See Appendix A
Statistical techniques
Empirical Orthogonal Functions, 28, 140
reconstructed fields, 166, 176
objective analysis, 53, 158
principal component analysis, 30, See Appendix A
spectral analysis, 27
superposed epoch analysis
composite, 27
Stevenson Screen, 128
Storm tracks, 65, 71
mid-latitude, 89
Stratosphere. Section 4.3.4.2
links to tropospheric weather, 99
Stratospheric variability. See Quasi-Biennial Oscillation
Stream function, 76, See Appendix B
divergent winds
magnitude, 76
seasonal mean, 76
Sub-grid scale
processes, 23, 70
Sub-monthly climate variability, 175, See Section 4.3.1
Sub-seasonal
MJO. See Madden-Julian Oscillation
Summary of the Day (SOD), 138
Sunshine duration. See Bias, sunshine duration
Sunspot. Section 5.5.1
Sunspot cycle, 8
Maunder Minimum, 14
statitical climate studies, 100
Index

Surface friction, 43
Surface pressure
20C reanalysis, 54
Surface Radiation Network (SURFRAD), 222
Surface temperature over land. Section 6.2
Synthetic Aperture Radar (SAR), 199, 214

Teleconnection, 92, 95, Section 11.6.2
using model data, 247

Temperature
Air
Maximum-Minimum Temperature System (MMTS), 128
anomalies, 202, 254, 294
ENSO, 85
change with height, 3, 211
critical metadata, 140
dewpoint, 43
diurnal cycle
influence of land surface on, 212
ocean. Section 8.2
skin, 170
ocean subsurface. Section 8.5
proxy
delta-O18, 109, 198
seasonal cycle
land influence, 210
wet bulb, 43

Temperature and CO2
theory, 107

Temperature Scales. Section 6.3

Terra
satellite, 216

Terrain
ice sheets, 198
influence of, 133
radar precipitation estimates, 163
rain gage distribution, 162
influence on observations, 31
precipitation, 159, 211
microclimates, 4

Thermocline, 4, 179
observations, 181
TAO buoys, 185

Tide gauges, 119, 178

Tides
atmospheric, 14
gravitational, 14
lunar, 14
solar, 14, 119

Time of Day Temperature Bias, 131

TIROS-1, 48

Tokyo Climate Center, 263

Topex-Poseidon. See Ocean topography

Trade Winds, 67, See Box 4.1

Transpiration, 213

Tree ring, 100, 110
data, 32

Trends
constraints on data accuracy, 133
filtering, 90
historical studies, 117
precipitation, 166, 255
sea ice
Antarctic, 205
Arctic, 203
in SST analyses, 175
stationary background climates, in, 66
versus oscillations. Section 5.2

Triangle Trans-Ocean Buoy Network (TRITON), 185

Triple point, 132

TRMM Precipitation Radar (TPR), 154

Tropical Atmosphere Ocean (TAO), 185

Tropical Ocean – Global Atmosphere (TOGA) program, 264

Tropical Rainfall Measuring Mission (TRMM) datasets, 161

Troposphere
Madden-Julian Oscillation, 91
role in the QBO, 98

U.S. Climate Reference Network (USCRN), 280

U.S. Department of Agriculture, 192, 216, 219

NASA
Global Reservoir and Lake Monitor, 231

U.S. Department of Commerce
USDoC, 221

U.S. Department of Energy (DoE), See Atmospheric Radiation Measurement (ARM) Program

U.S. Weather Bureau, 256, 265
early radiosonde observations, 45
early surface observations, 133

U.S. Department of Agriculture
USDA, 221

United Kingdom Meteorological Office
Unified Model, 263

United Kingdom Meteorological Office (UKMO)
climate prediction, 262
SST datasets, 254

Units of Measurement
historical
temperature, 132
land surface
not standardized, 218
in models, 240, See Table 11.1
winds. See Box 4.3

Urbanization
factor in microclimate, 130
influence of, 133
influence on temperature, 114
land use change, 212

© in this web service Cambridge University Press

www.cambridge.org
Validation
CRU dataset, 158
and verification. See Box 11.2
Variability
multidecadal, 100–101
preferred patterns, 64
Variable Infiltration Capacity (VIC)
model, 228
Variations
multi-decadal
AMOC, 100
Varves, 200
Vegetation
remotely sensed. See Normalize Difference
Vegetation Index (NDVI)
type, 6, 212
Vertical velocity, 71
Victor Starr, 53
Volcanoes
El Chichon, 112, 173
Krakatoa, 112
Pintubo, 173
Tambora, 112
Toba, 112
Vorticity, 73
Walker circulation, 68
ENSO, 97
Warm episodes
El Niño, 95
Water budget
mean. See Appendix D
Water budgets. Section 10.6.1
Water cycle, 15, 145, 220
lake/reservoir levels, 231
snow water equivalent (SWE), 193
Water vapor, 7, 43
condensation, 145, 147
greenhouse gas, 51
quantified, 43
SST estimates
influence on, 173
sulfate aerosol formation
volcanic eruption, 112
Weather station, xiii, 32, 40, 65–66, 79
Weather variations, 22, 89
vs climate variations, 105
as noise, 12
Weighted Anomaly of Standardized Precipitation
(WASP), 230
Wind
meridional component, 43
zonal component, 43
Windows
infrared, 51
Winds
mountain/valley. See Box 10.1
World Climate Research Programme (WCRP), 264
GPCP, 161
surface radiation, 222
World Data Center for Glaciology, 206
World Meteorological Organization (WMO), 222, 278
climate monitoring, 264
ENSO monitoring, 267
World Ocean Circulation Experiment (WOCE), 264
World Radiation Monitoring Center, 222
World, National and Regional Radiation Centers,
222
XBT. See Bathythermograph
Year without a summer, 112