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potential, φLJ, and the associated Weeks–Chandler–Anderson
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Lennard–Jones potential. The relative separation coordinate is scaled

by the distance σ , the point at which φLJ first passes through zero, and

the energy axis is scaled by the well depth, ε. This figure is courtesy

of J. D. Weeks page 20

2.1.2 The (v1,v2)-collision cylinder. The sphere has a radius a, which is the

range of the forces. For hard-sphere molecules, a is the diameter of

the molecules. 23

2.1.3 Direct and restituting collisions in the relative coordinate frame. The

corresponding collision cylinders, as well as the scattering angle, θ ,

are illustrated. 27

2.1.4 Schematic illustration of the direct collisions, on the right, and the

restituting collisions, on the left. The corresponding unit vectors

indicating the direction of the apse lines are also shown. 29

2.1.5 Schematic illustration of particle–wall collisions. In (a) the number of

particles with velocity v1 is increased due to collisions of particles

with the wall. In (b), the number of particles with velocity v1 is

diminished when one of them collides with the wall. 34

2.1.6 The effective potential energy for a two-body interaction as a function

of separation for a Lennard–Jones pair potential, φLJ, at various

values of the angular momentum. The energy axis is scaled by the

well depth, ε. Here the reduced spatial separation is given by

r∗ = r/σ , where r is the spatial separation of the particles, and σ is

the distance to the first zero of the pair potential. The reduced angular

momentum g∗ is given by g∗ = gb/(2mε)1/2. 39

2.1.7 The scattering angle, θ , as a function of impact parameter, b, for three

different relative energies, ǫ1 > ǫ2 > ǫ3, for two particles interacting

with a potential with a repulsive core and an attractive region at larger

separations. Note that three different impact parameters can lead to
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gas. The solid line are the theoretical predictions [639, 640, 649],
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√
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5.7.4 Theoretical and computer results for the two positive Lyapunov

exponents for an equilibrium, dilute, three-dimensional, random

Lorentz gas as a function of the reduced density are shown. Here the

scaling density is ρ0 =
√

2[8a3]−1. This figure is taken from the paper

of C. Dellago and H. A Posch [141] 192

5.7.5 The positive and negative Lyapunov exponents, λ+(nsa
2),λ−(nsa

2),

respectively, at two different reduced densities, plotted as a function
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with wave vector k is removed from the system. Incoming lines with

wave vector ki are associated with factors f (r,ki,t) in the collision

term C12, while outgoing lines are associated with factors of

(1 + f (r,ki,t)) in this collision term. 420

11.2.1 Dynamical event with phase-space volumes growing algebraically in

time. Figure (a) is a binary collision event that contributes to

U−t (1|2). Figure (b) is a sequence of two collisions that contributes to

U−t (1,2| 3). 448

11.2.2 Figure (a) illustrates the action of the two-particle operator, St (1,2),

on the phase points of the two particles in collision that is needed for

the evaluation of the integrand in Eq. (11.2.51). Figure (b) illustrates

the the coordinate system used in the evaluation of the integrals

appearing in Eq. (11.2.57). 454

11.2.3 Examples of dynamical events that contribute to the integrand in

Eq. (11.2.58) for particles interacting with central, repulsive forces.

Figure (a) illustrates a genuine three-body collision. Figures (b), (c),

and (d) represent sequences of three correlated collisions between the

three particles, They are called a recollision, a cyclic collision, and a

hypothetical collision, respectively. In the hypothetical collision

illustrated by Figure (d), one sees that particle 3 would have collided

with particle 1 had it not collided with particle 2 before it could hit 1.

The dashed lines and 1′,3′ represent the trajectories of particles 1 and

3 had the (2,3) not taken place. This corrects for the circumstance

that the two-body collision integral counts the hypothetical (1,3)

collision, as if it had actually taken place. Sequences (b), (c), and (d)

are examples of ring events, here involving three collisions among

three particles. Not illustrated are sequences of four collisions and

sequences where particles 1 and 2, say, collide while 3 is
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overlapping 2, preceded by a collision between 1 and 3. An example

is illustrated in Fig. 11.2.6. 458

11.2.4 This illustrates the important difference between the T̄ − and the T−
operators. In the left figure, the virtual part of the collision operator

T̄ − describes the relative configuration when the two particles are just

starting to overlap. In the right figure, the virtual part of the

T−operator describes the relative configuration when the two

particles have finished overlapping. 461

11.2.5 Schematic illustration of the double-overlapping configuration

contained in the product of three binary collision operators

T̄ −(1,2)S(0) ∗ T̄
v

−(1,3)S(0) ∗ T̄
v

−(2,3)S(0). At time τ2, particles 2

and 3 are in contact on their way to overlap. By time τ1, particle 1 is

in contact with particle 3 while particle 3 is overlapping particle 2. At

time t , particle 3 overlaps both of them. 461

11.2.6 Figure (a) represents the three-body Enskog contribution

f13f23T̄ −(1,2). Figure (b) represents the two-collision,

single-overlap contribution T̄ −(1,2)f23S
(0)T−(1,3). 463

12.2.1 The geometry for the construction of the binary collision operator,

Ta . The actual trajectory of the collision within the action sphere is

illustrated by the curved line. The apse line is the line of symmetry for

the collision, with unit vector κ̂ . The distance a(κ̂,g) from the

center-of-action sphere along the apse line denotes the point where

the incoming and outgoing relative velocity asymptotes intersect with

the apse line. 471

12.2.2 Sketch of recollision dynamics and times, for the recollision sequence

(1,2)(1,3)(1,2). The first (1,2) collision takes place at time t2, the

(1,3) collision takes place at time t1, and the final (1,2) collision

takes place at time t . 472

12.2.3 One of the many four-body ring events. These are correlated

sequences of four collisions among the four particles. 474

12.3.1 A repeated ring event with five collisions among four particles. Such

events have phase volumes that are less divergent than the ring events. 480

12.5.1 The coefficients of self-diffusion, D/D0; viscosity, η/η0; and thermal

conductivity, λ/λ0, for hard spheres, reduced by their Boltzmann

values as obtained from molecular dynamics, are plotted as functions

of density nσ 3, where σ is the diameter of the spheres. The data

points are the results of simulations by W. W. Wood and J. E.

Erpenbeck [206] for the coefficient of self-diffusion and B. J. Alder,

D. M. Gass, and T. E. Wainwright for all three transport coefficients

[8]. The solid curves represent the expansion given by Eq. (12.5.26)

for each transport coefficient using the values for the coefficients

given in Table 12.1, including the Enskog theory approximation for

b
(3)
μ,E . The dashed lines represent the first two terms in the expansion,

1 + a
(3)
μ na3. This figure is courtesy of J. V. Sengers. 499
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12.6.1 The figure on the left is a recollision event of the ring type with two

scatterers for a particle in a random Lorentz gas. On the right are two

events involving the moving particle and three scatterers that are

equally divergent. Both diagrams labeled (a) are ring recollision

events, while diagram (b) is a non-ring recollision event in which the

moving particle traverses the middle scatterer twice without

interacting with it. Both ring and non-ring events must be taken into

account when the most divergent terms in the density expansion are

summed. 500

12.6.2 These figures show the inverse of the coefficient of diffusion for a

moving particle in a hard-disk Lorentz gas, as obtained from

computer simulations. The upper figure shows the density dependence

of vσ/Dn∗ compared with the sum of the theoretical values for the

first four terms in Eq. (12.6.1). Here σ is the radius of a scatterer, v is

the speed of the moving particle, and n∗ = nσ 2 is the reduced density.

The solid line is the theoretical result for this quantity given by the

first four terms in Eq. (12.6.1). The lower figure shows the same

quantity with the low-density value subtracted from it as expressed in

Eq. (12.6.3). The solid line shows the value of the first logarithmic

term appearing in Eq. (12.6.3). The agreement of the theory with the

simulation results at low densities is evident. These figures are taken

from the papers of C. Bruin [69, 70]. 502

12.6.3 The functions f (χ) = μ′
2 ln χ + μ2 ± 2χ

√
π are plotted as functions

of χ . Here χ = λq/(πℓ), proportional the ratio of the de Broglie

wavelength of the electrons to the classical mean free path length. The

six measured values of these quantities are indicated, and the two

solid curves correspond to the two possible bounds on including the

next term, μ3χ . The two dashed curves represent these bounds

without the logarithmic term. This figure is taken from the paper of

K. I. Wysokinski, W. Park, D. Belitz, and T. R. Kirkpatrick [689, 690]. 503

13.2.1 The right and left figures represent the results of B. J. Alder and T. E.

Wainwright for the normalized velocity autocorrelation, ρ(s), where

s = (t/tℓ), for a tagged particle in a gas of hard disks (left) and hard

spheres (right). The velocity autocorrelation function for disks is

measured at three densities characterized by A/A0 = 2,3, and 5 –

where A0 is the close packing area, and for 986 (closed triangles) and

504 (open triangles) particles. The results for three dimensions for

V/V0 = 3, where V0 is the volume at close packing, are plotted on a

log scale, and the line has a slope of −3/2. These figures are taken

from the paper of Alder and Wainwright [10]. 513

13.2.2 The normalized velocity autocorrelation function for hard spheres for

V/V0 = 5, as a function of the reduced time s = t/tℓ, obtained by

W. W. Wood and J. E. Erpenbeck [205] from computer simulations

for different numbers of particles, N . Here as before, V0 is the volume

of N spheres at close packing. The dotted curve labeled DC is the
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infinite system result of Dorfman and Cohen [157, 156, 155]. The

dash-dot curves are theoretical results with finite size and sound mode

contributions included. This figure is taken from the paper of W. W.

Wood and J. E. Erpenbeck [205] 514

13.2.3 The velocity autocorrelation function as a function of time for a

tagged particle in a cellular automata lattice gas placed on a

Frisch–Hasslacher–Pomeau two-dimensional lattice (left figure) at a

density of 0.75 per lattice site or on a three-dimensional face-centered

lattice (FCHC, right figure) at a density of 0.10 per lattice site. The

agreement of the computer results with the theoretical expressions for

the decay of the autocorrelation function using mode-coupling theory

is excellent and clearly exhibits the long-time-tail effects after about

ten collision times. The lower curves indicate the estimated errors in

the computations. The left figure is taken from the paper of D.

Frenkel and M. H. Ernst [233], and the right figure is from the paper

of M. A. van der Hoef and D. Frenkel [651] 516

13.2.4 The velocity autocorrelation function multiplied by (t/tℓ) for a gas of

hard-disk particles at various densities from computer-simulated

molecular dynamics by M. Isobe. The packing fraction is defined by

v = nπa2/4. In this figure, the horizontal dotted line represents the

inverse time decay. This decay extends to times of order of a few

hundred mean free times at the lowest density, v = 0.05. The decay is

more rapid for higher densities. This figure is taken from the paper of

M. Isobe [321] 517

13.2.5 Theoretical curves for the coefficients of the (t/tE,ℓ)
−d/2 long-time

tails in the velocity autocorrelation function for a particle in a

hard-disk or hard-sphere gas, obtained by J. R. Dorfman and E. G. D.

Cohen, using Enskog theory values for the transport coefficients, as

given by Eq. (13.2.20) [157, 156, 155]. The crosses in the lower

curve, for hard disks, are the results of the computer simulation by B.

Alder and T. Wainwright [9, 10]. Here V0 is the close packing volume

and α
(d)
D,E = (t/tE,ℓ)

d/2ρD(t). The normalized velocity

autocorrelation function, ρD(t), is defined before Eq. (13.2.10). This

figure is taken from the paper of J. R. Dorfman and E. G. D. Cohen [157]. 520

13.2.6 The figure shows one-half of the averaged flow of the particles around

the tagged central disk, illustrating clearly the spatial and velocity

correlations in the flow pattern in the neighborhood of the tagged

particle. This figure is taken from B. J. Alder and T. E. Wainwright [10] 521

13.2.7 This figure shows the normalized velocity autocorrelation function,

φ(t) =< vx(0)vx(t) >, for tagged particle diffusion in a cellular

automata lattice gas plotted as a function of time for times up to about

600 mean free times. The solid line is the result of the self-consistent

mode-coupling theory as given by Eq. (13.2.34), which at these times

is an improvement over the simple mode-coupling theory. This figure

is taken from the paper of C. P. Lowe and D. Frenkel [443]. 525
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13.2.8 This figure shows the results obtained by M. Isobe for the long-time

behavior of the velocity autocorrelation functions for hard-disk gases

over similar time scales. These results show that the self-consistent

expression improves upon the simple mode-coupling result over these

time scales. This figure is taken from the paper of M. Isobe [321] 525

13.3.1 A plot of the absolute value of the sound mode frequency in liquid

argon. The solid line is ωs = ck, where c is the speed of sound. The

dashed line represents the result of mode-coupling theory with the

k5/2 term in Eq. (13.3.9) included. This figure is taken from the paper

of I. M. de Schepper, P. Verkerk, A. A. van Well, and L. A. de Graaf [130] 530

13.3.2 The figure on the top left is a plot of the normalized peak height of the

scattering function, �(Q), and the one on the top right is the

normalized half-width, γ (Q), as functions of the wave number Q, as

shown in the paper on the neutron-scattering experiments on liquid

sodium by C. Morkel, C. Gronemeyer, W. Glaser, and J. Bosse [491].

The solid lines are the predictions of mode-coupling theory given by

I. de Schepper and M. H. Ernst [126]. There are no adjustable

parameters in fits of the data to the theory. The dashed line in the left

figure is the result of hydrodynamics. The lower figure shows the data

for the Fourier transform of the velocity autocorrelation function

plotted as a function of the square root of the frequency expressed as

an energy [490]. The solid line is the result of mode-coupling theory [491]. 532

13.3.3 Extended hydrodynamic eigenvalues of the linearized revised Enskog

operator as a function of a dimensionless wave number, kσ, where σ

is the diameter of the spheres, denoted by a in the text, as calculated

for a dense hard-sphere gas (nσ 3/
√

2 = 0.625). Here D labels the

self-diffusive mode; H, the heat mode; ν, the viscous mode; and ±,

the two sound modes. The real part of the eigenvalues appear in the

negative ordinate, while the absolute values of the imaginary part of

the sound modes appear in the positive region. Also, zi ≡ ωi , and the

superscript s refers to the self-, or tagged particle, diffusion mode.

Also appearing are viscous-like and sound-like modes whose

eigenvalues do not vanish as k → 0. The wave number scale at the

bottom of the figure expresses the same wave number but in a

different dimensionless form, kℓE, using the mean free path length,

ℓE . For the density here, ℓE = 0.052σ . The mean free time between

collisions at this density is denoted in the figure by tE . This figure is

taken from the paper of I. de Schepper and E. G. D. Cohen [124] 534

13.3.4 Molasses tails. Theoretical and computer results for the stress-stress

(left) and velocity autocorrelation (right) functions for a dense system

of hard spheres at intermediate, not asymptotic, times. Mode-coupling

theory accounts for the behavior of the time correlation functions

even at these times including the negative, back-scattering, region in

the velocity autocorrelation function at relatively short times. The

softening of the heat mode eigenvalue at intermediate wave numbers
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studied by I. de Schepper and E. G. D. Cohen [124] is crucial for

these calculations. This figure is taken from the paper of T. R.

Kirkpatrick and J. C. Nieuwoudt [387, 388]. The data points in both

plots are computer simulation results obtained by W. W. Wood and

J. E. Erpenbeck, Ref. [199] 536

13.3.5 Negative regions in the velocity autocorrelation function. The figure

on the left shows the time correlation function, denoted here by Z(τ),

on a logarithmic time scale, for different values of the packing density

(the ratio of the volumes occupied by the spheres to the total volume

of the system). The back-scatter region appears at higher values of the

density. The figure on the right shows the time correlation function,

C̃(t), as a function of time for a hard-sphere crystal. The left figure is

taken from the paper of S. R. Williams, G. Bryant, I. K. Snook, and W.

van Megen [682], and the right, from the paper of T. R. Kirkpatrick [367] 537
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Tables

2.1 The recurrence time, tr, for 1 percent density fluctuations in a spherical

volume of radius a in air at standard temperature and pressure. This table is

taken from the paper of S. Chandrasekhar [86] and included in the

collection of papers [674]. page 52

3.1 The Eucken factor for three noble gases. Data taken from W. G. Kannuluik

and E. H. Carman [339]. 96

12.1 Coefficients in the density expansion for the transport coefficients for a gas

of hard spheres (left table) and for a gas of hard disks (right table). The data

are taken from the papers of Sengers and co-workers

[580, 581, 582, 308, 583, 337, 585]. Similar results for a
(3)
μ have also been

obtained by G. B. Brinser and D. W. Condiff [67]. 498
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Nomenclature

E(k) Energy of Bogoliubov excitations

[D(α),D(γ )] Bracket integral

α Accomodation coefficient for a boundary

αT Coefficient of thermal expansion

T̄0 Binary collision operator for binary collisions, when the duration of

the collision and the spatial separations of the colliding particles are

ignored

T̄W Binary collision operator for wall–particle collisions

T±(1,2) Hard-sphere binary collision operators

Tr
±(1,2) Real part of a hard-sphere binary collision operator

Tv
±(1,2) Virtual part of a hard-sphere binary collision operator

T̄±(1,2) Barred, or adjoint, of a hard-sphere binary collision operator,

T∓(1,2)

L̄0,W− Free streaming part of Liouville operator including particle–wall

interactions

L̄
(ps)
± (N) Barred pseudo-Liouville operator for N hard spheres

L̄
(ps)

W−(n) Pseudo-Liouville operator including particle-wall interactions

b
k̂
(1,2) Binary collision velocity exchange operator that replaces velocities

by their restituting values

β Inverse temperature parameter

F External force per unit mass in the Boltzmann equation

F ext External force in Langevin equation

k Wave vector

ρ(t) Density matrix

� Angular velocity vector

ρS Location of a point on the boundary surface of a system

σij Elements of the stress tensor

D Velocity gradient tensor
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xxvi Nomenclature

g Relative velocity of two particles

JK(r,t) Local energy current vector

P(r,t) Local pressure tensor

q(r,t) Local energy current

u(r,t) Local average velocity in a gas at point r at time t

c = v − u(r,t) Peculiar velocity of a particle

�(v) Boltzmann collision operator linearized about a total equilibrium

distribution function

�αβ Linearized Boltzmann collision operator for binary collisions of

particles of species α and β

�loc(v1) Boltzmann collision operator linearized about a local equilibrium

distribution

V N-particle 2dN-dimensional velocity vector in phase space

u Scaled velocity for granular gas

un Velocity of the normal fluid in a condensed boson gas

χT Isothermal compressibility

ℓ Mean free path length

ǫn Coefficient of restitution – normal

ǫt Coefficient of restitution – tangential

ǫ The azimuthal angle

η Coefficient of shear viscosity

η(r,t) External source in the η-ensemble

ηE Enskog theory coefficient of shear viscosity

ηi(t),ǫi(t) Descriptors for presence or absence of white or black beads at point

i at time t in the Kac ring model

γ Drag coefficient in Langevin equation

Ŵ+drdv Rate at which the number of particles with prescribed velocities

increase due to binary collisions in a very small 2d-dimensional one-

particle position and velocity phase space

Ŵ−drdv Rate at which the number of particles with prescribed velocities

decrease due to binary collisions in a very small 2d-dimensional one-

particle position and velocity phase space

Ŵs Sound damping coefficient

ŴS,E Enskog theory value of the sound damping coefficient

Ŵs Parameter descibing the cooling rate in a granular gas

ŴWdrdv Rate of change of the single particle distribution function due to col-

lisions of particles with a boundary wall in a small 2d-dimensional,

one-particle phase space
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Nomenclature xxvii

k̂ Unit vector in the direction of the vector from the origin to the point

of closest approach in binary collision as described in the relative

coordinate system centered on one of the colliding particles

V̂ Particle–particle Interaction contribution to the Hamiltonian

operator

σ̂ Unit vector along apse line for hard-sphere collisions

λ Coefficient of thermal conductivity

λ′ Partial coefficient of thermal conductivity

λ/(ηcv) Eucken factor

λE Enskog theory value of the coefficient of thermal conductivity

�
(±)
i (r,p,t) Positive and negative stretching factors

Lk Linear Boltzmann propagator acting on deviation of the single parti-

cle distribution from its equilibrium value, χ

L
(R)

k (z) Linear single particle ring propagator

WN (x1,x2, . . . ,xN ) General N-particle function of positions and momenta

symmetric under particle interchanges

G0(1,2, . . . ,s,z) Laplace transform of time displacement operator; also called a

propagator

L(Ŵ) N-particle Liouville operator

L0(Ŵ) Kinetic part of the N-particle Liouville operator

L
(ps)
± (N) Pseudo-Liouville operator for N hard spheres

LI (Ŵ) Interaction potential part of the N-particle Liouville operator

S(Ŵ) Time displacement operator in phase space

S
(0)
t (1,2, . . . ,s) s-particle free streaming operator

V
(eq)
s Husimi cluster functions for s-particles

μ Ordering parameter in the Chapman-Enskog solution of the

Boltzmann equation

μ12 Reduced mass of two particles

ν Collision frequency parameter in Bhatnagar–Gross–Krook (BGK)

model

ν(vi) Low-density, equilibrium collision frequency for a particle with

velocity vi

νc Collision frequency

ω Thermal creep coefficient

ω(±) Leading order term in sound mode eigenvalue

ωi(k) Hydrodynamic eigenvalues

�ij Non-dissipative terms in the matrix form of the linearized Navier–

Stokes equations

P,P⊥ Zwanzig–Mori projection operators
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