Contents

Foreword by James Gustave Speth
Preface

Part I Framework and fundamentals
1 Overview and summary
1.1 Outline of the book
1.2 Rationale and motivations
1.3 Brief history and summary of sustainomics
1.4 Millennium development prospects and worldwide status
2 Sustainomics framework
2.1 Basic concepts and principles
2.2 Key elements of the sustainable development triangle
2.3 Integration of economic, social and environmental elements
2.4 Tools and methods for integrated analysis and assessment
2.5 Restructuring development and growth for greater sustainability
3 Economics of the environment
3.1 Human activities and the environment
3.2 Conventional project evaluation
3.3 Measuring costs and benefits
3.4 Basic concepts for valuing environmental costs and benefits
3.5 Multicriteria analysis
3.6 Discount rate, risk and uncertainty
3.7 Economy-wide policies and the environment
3.8 Appendix: Estimating and using shadow prices
4 Ecological and social aspects
4.1 Conceptual framework linking ecological and socioeconomic systems
4.2 Property rights, governance and ecological–social linkages
4.3 Environmental and social assessment
Part II Global and transnational applications

1. **Global analytical applications**
 - 5.1 Climate change and sustainable development 137
 - 5.2 Applying the sustainomics framework to climate change 140
 - 5.3 Climate-change adaptation and mitigation 150
 - 5.4 Global-level interactions between climate change and sustainable development 154
 - 5.5 Greenhouse-gas-mitigation prospects in Sri Lanka 159
 - 5.6 Real-options framework for carbon trading under uncertainty 173

2. **International process applications: multilevel, multistakeholder, transdisciplinary dialogues**
 - 6.1 Global transdisciplinary scientific dialogue on climate change and sustainable development 180
 - 6.2 Multilevel integration of millennium ecosystem assessment results and millennium development goals 184
 - 6.3 Using the AIM to analyse MA–MDG links at the national and global levels 189
 - 6.4 Dams and development: multilevel, multistakeholder dialogue 193
 - 6.6 Dams and Development Project evaluation, conclusions and results 200

Part III National and macroeconomic applications

1. **National economy-wide applications**
 - 7.1 Historical evolution of ideas 212
 - 7.2 Empirical evidence 215
 - 7.3 Framework for analysis 219
 - 7.4 Case study of Brazil – making long-term development more sustainable 225

2. **Mathematical macromodel applications**
 - 8.1 Optimal growth models and sustainable development 243
 - 8.2 Economic and non-economic costs and benefits of growth 244
 - 8.3 An optimization model: Ecol-Opt-Growth-1 246
 - 8.4 Ecol-Opt-Growth-1 model conclusions 253
 - 8.5 Macroeconomic policies, second-best theory and environmental harm 254
 - 8.6 Developing country case studies 256
 - 8.7 Appendix A: The Ecol-Opt-Growth-1 model 260
 - 8.8 Appendix B: Second-best nature of macroeconomic policies when environmental externalities are present 265
Contents

9 Computable general equilibrium modelling applications 269
9.1 Economy-wide cross-effects of social and environmental policies in Chile 269
9.2 Review of economic, social and environmental issues and policies 272
9.3 Interactions between social, environmental and economic policies 280
9.4 Chile case study conclusions 288
9.5 Economy-wide policies and deforestation in Costa Rica 289
9.6 Modelling approach 292
9.7 Main findings of the Costa Rica study 299
9.8 Appendix A: ECOGEM–Chile CGE model summary 303
9.9 Appendix B: Costa Rica CGE model summary 306

Part IV Sub-national sectoral and system applications

10 Energy-sector applications 313
10.1 Energy and sustainable development 313
10.2 Framework for sustainable energy development 321
10.3 Applying SED to power planning in Sri Lanka 333
10.4 Energy policy options 338
10.5 Assessing the sustainability of energy policies in South Africa 343
10.6 Making electricity development more sustainable in the UK 350

11 Transport-sector applications 355
11.1 Generic priorities for sustainable transport 355
11.2 Health-damage costs of air pollution in Sri Lanka 357
11.3 Traffic congestion – economic and environmental sustainability 364
11.4 Other options for reducing traffic congestion 377
11.5 Sustainable transport policy in Sri Lanka 385

12 Water-resource applications 391
12.1 Hydrological cycle and human actions 391
12.2 Water and development 395
12.3 Sustainable water-resources management and policy (SWAMP) 402
12.4 Management of groundwater depletion and saline intrusion in the Philippines 406
12.5 Policy implementation issues 413
12.6 Simple water filtration method for cholera prevention in Bangladesh 416
12.7 Appendix: Economic costs of producing water 420

13 Ecological and agricultural system applications 424
13.1 Sustainable management of tropical forests 424
13.2 Valuing forest ecosystems in Madagascar 434
13.3 Agriculture and climate change 441
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4</td>
<td>Climate impacts on agriculture in Sri Lanka</td>
<td>444</td>
</tr>
<tr>
<td>13.5</td>
<td>Appendix: Models used for tropical forest valuation</td>
<td>456</td>
</tr>
<tr>
<td>14</td>
<td>Resource-pricing-policy applications</td>
<td>460</td>
</tr>
<tr>
<td>14.1</td>
<td>Sustainable pricing policy (SPP)</td>
<td>460</td>
</tr>
<tr>
<td>14.2</td>
<td>Extensions of the basic model</td>
<td>467</td>
</tr>
<tr>
<td>14.3</td>
<td>Calculating economically efficient prices based on strict LRMC</td>
<td>475</td>
</tr>
<tr>
<td>14.4</td>
<td>Adjusting efficient prices to meet other objectives</td>
<td>480</td>
</tr>
<tr>
<td>14.5</td>
<td>Sustainable pricing of water resources</td>
<td>486</td>
</tr>
<tr>
<td>14.6</td>
<td>Appendix A: Optimal energy pricing</td>
<td>490</td>
</tr>
<tr>
<td>14.7</td>
<td>Appendix B: Demand analysis and forecasting</td>
<td>496</td>
</tr>
</tbody>
</table>

Part V Project and local applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Project applications</td>
<td>503</td>
</tr>
<tr>
<td>15.1</td>
<td>Small hydro-projects and sustainable energy development in Sri Lanka</td>
<td>503</td>
</tr>
<tr>
<td>15.2</td>
<td>Main findings of small hydro study</td>
<td>508</td>
</tr>
<tr>
<td>15.3</td>
<td>New and renewable energy projects: case study of solar photovoltaics</td>
<td>512</td>
</tr>
<tr>
<td>15.4</td>
<td>Sustainable rural electrification based on renewable energy</td>
<td>519</td>
</tr>
<tr>
<td>15.5</td>
<td>Evaluating a typical water supply project in a poor African village</td>
<td>535</td>
</tr>
<tr>
<td>16</td>
<td>Local applications – hazards, disasters and urban growth</td>
<td>544</td>
</tr>
<tr>
<td>16.1</td>
<td>Sustainable hazard reduction and disaster management (SHARM)</td>
<td>544</td>
</tr>
<tr>
<td>16.2</td>
<td>The 2004 Asian Tsunami – a preliminary assessment</td>
<td>554</td>
</tr>
<tr>
<td>16.3</td>
<td>Sustainability of long-term growth in Asian cities</td>
<td>569</td>
</tr>
<tr>
<td>16.4</td>
<td>Urban vulnerability, natural hazards and environmental degradation</td>
<td>578</td>
</tr>
<tr>
<td>16.5</td>
<td>Making urban development more sustainable in North America and Europe</td>
<td>583</td>
</tr>
</tbody>
</table>

References
Index

© Cambridge University Press
www.cambridge.org