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Hamiltonian formalism

1.1 Hamilton’s principle of stationary action
A dynamical system with a finite number n degrees of freedom can be described
by real functions of time qi(t) (i = 1, 2, ..., n) which, together with the derivatives
q̇i(t), uniquely determine its state at any moment of time t. The collection of all
values of qi is called the configuration space M of the system. In the simplest case,
M is a Euclidean space Rn. It can generally be an n-dimensional (differentiable)
manifold. In a small neighborhood of each point, a manifold looks topologically
like a Euclidean space Rn. This allows one to introduce local coordinates on the
manifold M and develop calculus on M . Every point of M has a neighborhood U

that is homeomorphic to Rn (there is a continuous and invertible map between
points of U and some subset of Rn). Let qi, i = 1, 2, ..., n, be rectangular coor-
dinates in Rn. A neighborhood U with local coordinates in it (i.e. with the map
φ : U → Rn) is called a chart. A manifold can be covered by a set of charts
with transition maps between local coordinate systems in the overlap of any
two charts. Thus, in a local coordinate system on M , the time evolution of a
dynamical system is again described by n real functions qi(t), i = 1, 2, ..., n.

Consider trajectories of the system qi = qi(t) on M through a point qi
0 = qi(0).

The derivative q̇i(0) is called a tangent vector to the curve at q = q0. The tangent
space Tq at q = q0 is defined as the set of all tangent vectors q̇i(0) at the point
q = q0. Thus, the velocity q̇ is an element of Tq. The tangent bundle of a manifold
M is a disjoint union TM = ∪q∈MTq. A state of a dynamical system is an element
of TM as, at any moment of time t, it is defined by values of qi(t) and q̇i(t). The
quantities qi and q̇i are called generalized coordinates and velocities, respectively.
It is worth noting that a configuration space can be infinite-dimensional if the
system has infinitely many degrees of freedom. A field theory is an example of
such a system.

Differential equations whose solution determines the trajectory of motion q =
q(t) in the system configuration space are called the equations of motion. For
a sufficiently large class of dynamical systems, the equations of motion can be
obtained from Hamilton’s principle of staionary action (or, simply, Hamilton’s
principle) which states that the trajectory q(t) with fixed end points q(t1) and
q(t2) is an extremum of the action functional (see, e.g. [1–3])

S = S[q; t1, t2] =
∫ t2

t1

L(q̇, q, t) dt. (1.1)
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2 Hamiltonian formalism

The real function L of time t ∈ R, generalized coordinates, and velocities is called
a Lagrangian of the dynamical system (i.e. L : R × TM → R).

Variations of a trajectory qi = qi(t), t1 ≤ t ≤ t2, are a set of trajectories
qi = qi

ε(t) parameterized by real ε so that

qi
ε(t) = qi(t) + εΦi(t) + O(ε2) ≡ qi(t) + δqi(t) + O(ε2), (1.2)

and Φi(t1,2) = 0, where Φi(t) is called the variation field. The variational deriva-
tive δS/δq is defined by

d

dε
S[qε; t1, t2]

∣∣∣
ε=0

=
∫ t2

t1

δS

δqi
Φi(t) dt. (1.3)

A curve qi = qi(t) is an extremum of the action (1.1) if the variational derivative
of the latter vanishes for this curve. The extremum condition

δS

δqi(t)
= 0 , δq(t1) = δq(t2) = 0, (1.4)

yields the Euler–Lagrange equation of motion

d

dt

∂

∂q̇i
L(q̇, q, t) =

∂

∂qi
L(q̇, q, t). (1.5)

Thus, all such dynamical systems are determined by their Lagrangians. A
Lagrangian should satisfy some physical conditions, e.g. to be invariant under
symmetry transformations of the dynamical system such as, for instance, the
Lorentz symmetry transformations, etc. It is natural to demand that the Euler–
Lagrange equations be self-consistent. For example, put L = q (here n = 1).
Equation (1.5) leads to an obvious contradiction, 0 = 1. In other words, the
corresponding action has no extremum at all.

It appears that most dynamical systems occurring in nature are described
by second-order differential equations, that is, they do not involve higher-order
derivatives with respect to time. However, there is no general law that prohibits
theories with higher derivatives. As a rule, the existence of higher derivatives in
the theory is associated with some internal structure of the object described by
such a theory. For example, higher derivatives naturally emerge in an approximate
description of elastic vibrations of a rod whose transverse dimensions are much
smaller than its length [4]. In this case, the Lagrangian depends on higher time
derivatives qi(m) = dmqi/dtm (m > 1) so that the trajectory of motion is an
extremum of the action

S = S[q; t1, t2] =
∫ t2

t1

L
(
q(m), q(m−1), ..., q̇, q, t

)
dt.

The equations of motion resulting from the principle of stationary action (called
the Hamilton–Ostrogradsky principle) are known as Ostrogradsky’s equations [5]

δS

δqi(t)
=

m∑
k=0

(−1)k dk

dtk
∂L

∂qi(k)
= 0. (1.6)
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1.1 Hamilton’s principle of stationary action 3

Note that the variational derivative of the action is evaluated under the condition
that δq(k)(t1) = δq(k)(t2) = 0, for k = 0, 1, ...,m − 1.

1.1.1 Poincaré equations

Hamilton’s principle on manifolds has a peculiarity related to the choice of a basis
in the tangent space. At any point q ∈ M the operators (vector fields) êi = ∂/∂qi

define the rate of change of any function F (q) along the trajectory qi = qi(t):
Ḟ = q̇iêiF . The velocity q̇i is an element of the tangent space Tq. In general, one
can define n smooth linearly independent vector fields on M that serve as a new
basis in Tq,

ŵi = wj
i (q)êj , [ŵi, ŵj ] = ck

ij(q)ŵk, (1.7)

where wj
i (q) are functions of q and [ , ] denotes the commutator. The rate of

change of a function F along the trajectory can be written in the new basis:

Ḟ = q̇iêiF = ωiŵiF.

The quantities ωi are position-dependent linear combinations of the velocities q̇i

and called quasi-velocities [6]. In differential geometry, the structure functions
ck
ij(q) are called the object of anholonomity [7]. Note that under a change of local

coordinates on M , q → Q, the basis in Tq transforms as ∂/∂Qi = Jj
i (q)êj , where

Jj
i = ∂qj/∂Qi is the Jacobian of the change of coordinates. Clearly, the new

basis ŵi = ∂/∂Qi is commutative, i.e. if wj
i = Jj

i , then the structure functions
vanish, ck

ij = 0. When the structure functions are non-trivial, the basis vector
fields are not integrable (there is no change of variables such that ŵi = ∂/∂Qi),
and, hence, the quasi-velocity ωi is not the time derivative of a local coordinate
on M . Such bases in Tq are called anholonomic. Anholonomic bases turn out
to be quite useful in constructing equations of motion for dynamical systems on
manifolds.

Let L(q̇, q) = L̃(ω, q) be the Lagrangian expressed as a function of local coor-
dinates and quasi-velocities. Let qi

ε(t) be a variation of the trajectory as defined
in (1.2). Put

∂

∂ε
F (qε)

∣∣∣
ε=0

= φiŵiF, (1.8)

where φi are the components of the variation vector field Φ in the new basis.
They are now independent variations of the trajectory. From the commutativity
of the derivatives, [∂/∂t, ∂/∂ε]F (qε(t)) = 0, and the commutation relation (1.7),
the variations of the quasi-velocities are obtained:

∂ωi

∂ε

∣∣∣
ε=0

=
dφi

dt
+ ci

kjω
kφj . (1.9)

Computing the variation of the action S =
∫

L̃dt by means of (1.8), (1.9), and
the boundary conditions φi(t1,2) = 0 (as a consequence of Φi(t1,2) = 0), the
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4 Hamiltonian formalism

equations of motion in the anholonomic basis are obtained:

d

dt

∂L̃

∂ωi
= ŵiL̃ + cj

ikωk ∂L̃

∂ωj
. (1.10)

Equations (1.10) are called the Poincaré equations [8]. Poincaré first obtained
them in his studies of celestial mechanics. In a holonomic basis in Tq the Poincaré
equations become the Euler–Lagrange equation (1.5).

To appreciate the Poincaré equations, consider a dynamics on a group manifold
M = G. Let ŵi be generators of left shifts on G, i.e. g → g0g, g0, g ∈ G (see
Section 8.1.1 for a summary of the group theory). Then the structure functions
ck
ij(q) are constant and coincide with the structure constants of G. If, in addition,

one imposes the condition that the Lagrangian is invariant under the left shifts,
i.e. ŵiL̃ = 0, then the Poincaré equations determine the time evolution of a
“free” particle on the group manifold (in the form that does not depend on any
particular choice of local coordinates on G) [6].

The simplest example of this kind is provided by the motion of a rigid body with
one fixed point. The motion has the characteristic properties that the distance
between any two points of the body remains constant, and one of its points always
coincides with a fixed point in space. Clearly, all possible positions of the system
are obtained from a particular one by rotations in space about a point. Thus,
M is the group SO(3) manifold. Let r0 be the position vector of a point of the
body relative to the point about which it rotates. In time t the position vector is
r(t) = U(t)r0, where U(t) ∈ SO(3) (i.e. UUT = UT U = 1 and detU = 1, where
UT is the transpose of U). The velocity of this point is then ṙ = U̇UT r. Since
the matrix U̇UT is skew-symmetric (because UUT = 1), there exists a vector Ω,
called the angular velocity, such that ṙ = Ω × r. In the frame moving with the
body, the angular velocity vector is ω = UT Ω. It can be shown that the kinetic
energy of the system has the form (see, e.g. [1])

L =
1
2
(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
,

where the components ωi are defined in the frame whose axes coincide with the
principal axes of the tensor of momenta of inertia, and Ii (i = 1, 2, 3) are principal
values of the tensor. Apparently, ωi are not the conventional generalized veloci-
ties of the dynamical system as there exist no coordinates qi such that ωi = q̇i.
So the Euler–Lagrange equation (1.5) would lead to incorrect equations for the
rigid body dynamics, and the Poincaré equations must be applied. In the basis
associated with the principal axes, ŵi should generate rotations about the ith
axis, and, hence, [ŵi, ŵj ] = εijkŵk, where εijk is the totally skew-symmetric
unit tensor (the structure constants of SO(3)). According to (1.10), one
obtains

L̇ = L × ω ,
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1.1 Hamilton’s principle of stationary action 5

where Li = Iiωi (no summation over i) are the components of the angular
momentum vector L. These are the well-known equations of a spinning top.

1.1.2 The existence of a Lagrangian for a dynamical system

Suppose that the time evolution of a dynamical system is described by a system
of second-order differential equations. A natural question arises as to whether
this system can always be cast in the form of the Euler–Lagrange equations. The
answer is negative. There are so-called non-Lagrangian systems for which it is
impossible to find a Lagrangian [9]. As an example, consider a dynamical system
in M = R3 whose time evolution is determined by the equations [10, 11]

q̈i − αεijkqj q̇k = 0, (1.11)

where α is a real constant, εijk is the totally antisymmetric unit tensor, ε123 = 1
(in [10], a more general system was studied where α = α(q) = λ|q|−3, λ =
const). The summation over repeated indices is assumed in (1.11). Clearly, the
initial value problem for Eqs. (1.11) does have a solution. However, there is no
Lagrangian such that the Euler–Lagrange equations coincide with (1.11).

In general, the existence of a Lagrangian for a dynamical system was studied
by Helmholtz [12]. Given a system of second-order equations

Gi(q̈, q̇, q) = Hij(q̇, q)q̈j + Ai(q̇, q) = 0,

where i = 1, 2, ..., n, the necessary and sufficient conditions on Gi as functions of
q, q̇, and q̈ in order for a Lagrangian L to exist are [12]

∂Gi

∂q̈j
=

∂Gj

∂q̈i
, (1.12)

∂Gi

∂q̇j
+

∂Gj

∂q̇i
=

d

dt

(
∂Gi

∂q̈j
+

∂Gj

∂q̈i

)
, (1.13)

∂Gi

∂qj
− ∂Gj

∂qi
=

1
2

d

dt

(
∂Gi

∂q̇j
− ∂Gj

∂q̇i

)
. (1.14)

If these conditions are fulfilled, a Lagrangian L can be found by solving the
following equations

∂2L

∂q̇i∂q̇j
q̈j +

∂2L

∂q̇i∂qj
q̇j − ∂L

∂qi
= Gi. (1.15)

It is easy to verify that for Gi given in (1.11), conditions (1.12) and (1.13) are
trivially satisfied, while the third Helmholtz condition (1.14) is violated.

However, the existence problem for a Lagrangian may be treated more broadly.
Namely, one could take an equivalent set of equations M j

i Gj = 0, where integrat-
ing factors M j

i form a non-singular matrix and are functions of q, q̇, and t.
Then the Helmholtz conditions are viewed as equations for M j

i . These equations
can be recast in a geometrical form known as the Douglas theorem [13] (see also
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6 Hamiltonian formalism

Section 1.14.3). In particular, it should be noted that there are dynamical systems
for which there exist many integrating factors leading to different Lagrangians.

As a simple example, consider a particle moving along the line under the
friction force proportional to the particle velocity. The equation of motion has
the form

q̈ + αq̇ = 0. (1.16)

The Helmholtz condition (1.13) is not fulfilled for this equation. Consider an
equivalent equation of the form

G ≡ M(q̇, q)(q̈ + αq̇) = 0.

The integrating factor M must be chosen so that G satisfies (1.13) (the other
Helmholtz conditions are trivially satisfied for a one-dimensional motion):

αq̇
∂M

∂q̇
+ αM = q̇

∂M

∂q
. (1.17)

This equation has many solutions and can easily be solved by separating vari-
ables M(q̇, q) = Φ(q̇)Ψ(q). The corresponding Lagrangian is obtained by solving
Eq. (1.15). Let β = −Ψ′/Ψ �= 0 be the separation constant. Then M(q̇, q) =
e−βq−βq̇/α/q̇ . Non-constant solutions (q̇ �= 0) of (1.16) are extrema of the action

S =
∫

dtL, L = q̇F (q̇) exp(−βq), (1.18)

where the function F (q̇) satisfies the condition

dF

dq̇
=

1
q̇2

exp
(
−β

α
q̇

)
.

If the separation constant in (1.17) is set to zero, i.e. M = Φ(q̇) = 1/q̇ (β = 0),
then the Lagrangian has the conventional form L = T (q̇) − V (q), where V = αq

and d2T/dq̇2 = 1/q̇.
Alternatively, the equation of motion (1.16) can also be regarded as the Euler–

Lagrange equation for the Lagrangian that explicitly depends on time:

L =
1
2
eαtq̇2. (1.19)

The Helmholtz condition (1.13) is satisfied with the integrating factor explicitly
depending on time, M = eαt. Furthermore, the dynamical system (1.16) can be
viewed as a part of a larger Lagrangian dynamical system, e.g.

L(q̇, q, Q̇, Q) = Q̇(q̇ + αq).

The Euler–Lagrange equations of motion for the variables q and Q are decoupled,
and, in particular, they coincide with (1.16) for q(t). Such a possibility is not even
included in the Helmholtz conditions.

The above analysis shows that the choice of the Lagrangian may not be unique,
and additional physical principles should be invoked to limit it (e.g. to demand
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1.2 Hamiltonian equations of motion 7

that the Hamiltonian coincides with the system energy (see Section 1.2), or that
the Lagrangian has specific symmetries, etc.).

1.2 Hamiltonian equations of motion
Equations (1.5) are of the second order. Any system of second-order differential
equations can be transformed to a system of first-order differential equations by
increasing the number of independent functions. Indeed, setting

pi =
∂L

∂q̇i
, (1.20)

one finds from (1.5) that

ṗi =
∂L

∂qi
. (1.21)

The quantity pi defined by (1.20) is called the canonical momentum conjugated
to qi. The matrix

Tij =
∂2L

∂q̇i∂q̇j

is called the Hessian matrix (or simply, the Hessian) of the Lagrangian system. If
it is not singular, detT �= 0, then by the implicit function theorem, the relation
(1.20) defines the generalized velocities q̇i as functions of qi and pi, that is,

q̇i = q̇i(p, q, t), (1.22)

which must be substituted into (1.21). Then Eqs. (1.21) and (1.22) comprise the
system of first-order differential equations for the generalized coordinates qi and
momenta pi.

In Lagrangian systems with a singular Hessian matrix, the implicit function
theorem does not apply, and the straightforward transformation to the corre-
sponding first-order equations of motion is impossible. In this case, Eqs. (1.20)
yield some relations φa(p, q, t) = 0, called constraints, between the canonical vari-
ables. A general analysis of constrained systems will be given in Chapter 3. Here
it is always assumed that the Hessian matrix is not singular.

Let f be a concave function in a Euclidean space. The matrix of its second
derivatives, ∂2f/∂xi∂xj , is either positive or negative definite in the domain of f .
By the implicit function theorem, the equation y = ∂f/∂x can be solved defining
the function x = x(y). The function

g(y) = y · x(y) − f(x(y))

is called the Legendre transform of f [3].
The Hamiltonian of a Lagrangian system is the Legendre transform of L(q̇, q, t)

with respect to the variable q̇,

H(p, q, t) = piq̇
i − L(q̇, q, t), (1.23)
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8 Hamiltonian formalism

where q̇i = q̇i(p, q, t) is defined by (1.20) (i.e. yi = pi and xi = q̇i). The first-order
differential equations (1.20) and (1.21) can also be obtained from the variational
principle for the action written in the Hamiltonian form,

SH =
∫ t2

t1

dt
(
piq̇

i − H(p, q, t)
)
, (1.24)

with the same boundary conditions (1.4). It follows from (1.23) that the actions
(1.24) and (1.1) are equivalent. In the Hamiltonian action (1.24), the independent
variables are pi and qi. Therefore

δSH

δqi
= −ṗi − ∂H

∂qi
= 0,

δSH

δpi
= q̇i − ∂H

∂pi
= 0,

or, after moving all the partial derivatives of the Hamiltonian to the right-hand
side,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (1.25)

The system (1.25) is called the Hamiltonian equations of motion.
Thus, if qi(t) satisfies the Euler–Lagrange equations, then the pairs (pi(t),

qi(t)) solve the Hamiltonian equations of motion and vice versa, meaning that
the Euler–Lagrange and Hamiltonian systems of equations are equivalent. All the
pairs (pi, q

i) form the phase space of the system. A typical Lagrangian considered
in what follows reads

L =
1
2
gij(q)q̇iq̇j + Ai(q)q̇i − V (q);

here V (q) is a potential energy, the matrix gij is assumed to be non-singular and
may depend on the coordinates. The Euler–Lagrange equations of this system
are easy to obtain

gij q̈
j = −Γnj,iq̇

nq̇j + Fij q̇
j − V,i, (1.26)

where Fij = Aj,i −Ai,j , the index after the comma denotes the partial derivative
with respect to the corresponding coordinate, for instance, gnj,i ≡ ∂gnj/∂qi, and
Γnj,i = 1/2(gni,j + gji,n − gnj,i) ≡ [nj, i] are the Christoffel symbols.

Consider the Hamiltonian formalism for this system. By the definition (1.20)
the canonical momenta are

pi =
∂L

∂q̇i
= gij q̇

j + Ai. (1.27)

The generalized velocities are found as functions of the coordinates and momenta
from (1.27),

q̇j = q̇j(p, q) = gji(q)(pi − Ai(q)),

where gij is the inverse of the matrix gij , gijgjk = δi
k. The substitution of these

relations into (1.23) yields the Hamiltonian of the system:
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1.3 The Poisson bracket 9

H =
1
2
gij(pi − Ai)(pj − Aj) + V. (1.28)

It is straightforward to verify that, when gij = δij and Ai = 0, this Hamiltonian
turns into the sum of the kinetic and potential energies of a particle with unit
mass whose position is given by the coordinates qi.

Such a simple relation between the Hamiltonian and the system energy is not
always possible. For example, a particle moving along an axis under the friction
force is described by Eq. (1.16). If the Lagrangian is taken in the form (1.18),
then the Hamiltonian obtained via the Legendre transform does not depend on
time explicitly, and, therefore, is a conservative quantity. The Legendre transform
for the time-dependent Lagrangian (1.19) leads to the Hamiltonian that also
explicitly depends on time,

H =
1
2
e−αtp2, (1.29)

where p = ∂L/∂q̇ = eαtq̇. It follows from the Hamiltonian equations of motion
(1.25) that ṗ = 0, i.e. the momentum is conserved, p = p0 = const. Therefore,

H = e−αtE0, (1.30)

where E0 = p2
0/2 is the initial energy. Equation (1.30) shows that the Hamiltonian

of the system is not conserved.
So, the same equations of motion can be obtained from different Lagrangians;

the Hamiltonian depends on the choice of the Lagrangian. In Section 1.12 a
particle with friction is also described as a system with a non-standard symplectic
structure.

In addition, it is worth noting that there are dynamical systems for which the
Hamiltonian equations of motion are impossible to construct. For example, put

pi = q̇i, ṗi = αεijkqjpk, i, j, k = 1, 2, 3. (1.31)

Equations (1.31) are equivalent to the equations of motion (1.11) for which there
exists no Lagrangian (see also a further discussion in Section 1.14.3).

1.3 The Poisson bracket
Consider the time evolution of a function F (p, q, t) along a phase space trajectory
p = p(t) and q = q(t). From the Hamiltonian equations of motion (1.25) one finds
that

dF

dt
=

∂F

∂t
+

∂F

∂qi
q̇i +

∂F

∂pi
ṗi

=
∂F

∂t
+

∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi
≡ ∂F

∂t
+ {F,H}. (1.32)
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10 Hamiltonian formalism

The symbol

{A,B} =
n∑

i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
(1.33)

defined in (1.32) is called the Poisson bracket for functions A and B in the
phase space of the system. The Poisson bracket has several remarkable properties.
Namely, it is skew-symmetric,

{A,B} = −{B,A}, (1.34)

satisfies both the Leibniz rule,

{A,BC} = {A,B}C + B{A,C}, (1.35)

and the Jacobi identity,

{{A,B}, C} + {{B,C}, A} + {{C,A}, B} = 0 (1.36)

for arbitrary A, B, and C. If the function F does not depend explicitly on time,
then its evolution is determined by the equation Ḟ = {F,H}. Taking the canon-
ical coordinates and momenta as F , the Hamiltonian equations of motion are
written in the symmetric form,

q̇i = {qi,H}, ṗi = {pi,H}.
A quantity F is an integral of motion if dF/dt = 0 and, hence,

∂F

∂t
+ {F,H} = 0. (1.37)

For integrals of motion that do not depend explicitly on time, Eq. (1.37) has a
simpler form: {F,H} = 0. In particular, the Hamiltonian is an integral of motion
if it does not depend explicitly on time because dH/dt = ∂H/∂t = 0.

1.4 Canonical transformations
The Poisson bracket for the canonical coordinates and momenta is

{qi, pj} = δi
j . (1.38)

Consider functions

Qi = Qi(p, q) , Pi = Pi(p, q) (1.39)

such that

{Qi, Pj} = δi
j . (1.40)

The functions (1.39) are said to define a canonical transformation, whereas Qi and
Pi are new generalized coordinates and momenta, respectively [1]. Put in (1.33),
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