CAMBRIDGE TRACTS IN MATHEMATICS

General Editors
B. BOLLOBÁS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK,
B. SIMON, B. TOTARO

177 A Higher-Dimensional Sieve Method
A Higher-Dimensional Sieve Method

HAROLD G. DIAMOND
H. HALBERSTAM

With Procedures for Computing Sieve Functions
WILLIAM F. GALWAY
CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India
103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9780521894876
© H. Diamond, H. Halberstam and W. Galway 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-89487-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
In memory of Hans-Egon (Ted) Richert
Contents

List of Illustrations \hspace{5cm} \textit{page xi}
List of Tables \hspace{6cm} \textit{xiii}
Preface \hspace{6cm} xv
Notation \hspace{6cm} xvii

Part I Sieves \hspace{6cm} 1

1 Introduction \hspace{6cm} 3
1.1 The sieve problem \hspace{6cm} 3
1.2 Some basic hypotheses \hspace{6cm} 4
1.3 Prime q-tuples \hspace{6cm} 6
1.4 The $\Omega(\kappa)$ condition \hspace{6cm} 8
1.5 Notes on Chapter 1 \hspace{6cm} 11

2 Selberg's sieve method \hspace{6cm} 13
2.1 Improving the Eratosthenes-Legendre sieve \hspace{6cm} 13
2.2 A new parameter \hspace{6cm} 14
2.3 Notes on Chapter 2 \hspace{6cm} 17

3 Combinatorial foundations \hspace{6cm} 19
3.1 The fundamental sieve identity \hspace{6cm} 19
3.2 Efficacy of the Selberg sieve \hspace{6cm} 22
3.3 Multiplicative structure of modifying functions \hspace{6cm} 25
3.4 Notation: \mathcal{P}, $S(\mathcal{A}, \mathcal{P}, z)$, and V \hspace{6cm} 26
3.5 Notes on Chapter 3 \hspace{6cm} 27

4 The Fundamental Lemma \hspace{6cm} 29
4.1 A start: an asymptotic formula for $S(\mathcal{A}_q, \mathcal{P}, z)$ \hspace{6cm} 29
4.2 A lower bound for $S(\mathcal{A}_q, \mathcal{P}, z)$ \hspace{6cm} 33
4.3 Notes on Chapter 4 \hspace{6cm} 42
Contents

5 Selberg's sieve method (continued) 43
 5.1 A lower bound for $G(\xi, z)$ 43
 5.2 Asymptotics for $G^*(\xi, z)$ 52
 5.3 The j and σ functions 56
 5.4 Prime values of polynomials 64
 5.5 Notes on Chapter 5 66

6 Combinatorial foundations (continued) 67
 6.1 Statement of the main analytic theorem 67
 6.2 The $S(\chi)$ functions 70
 6.3 The "linear" case $\kappa = 1$ 71
 6.4 The cases $\kappa > 1$ 73
 6.5 Notes on Chapter 6 79

7 The case $\kappa = 1$: the linear sieve 81
 7.1 The theorem and first steps 81
 7.2 Bounds for $V \Sigma^\pm$: the set-up 85
 7.3 Bounds for $V \Sigma^\pm$: conclusion 88
 7.4 Completion of the proof of Theorem 7.1 92
 7.5 Notes on Chapter 7 95

8 An application of the linear sieve 97
 8.1 Toward the twin prime conjecture 97
 8.2 Notes on Chapter 8 102

9 A sieve method for $\kappa > 1$ 103
 9.1 The main theorem and start of the proof 103
 9.2 The S_{21} and S_{22} sums 107
 9.3 Bounds on Σ^\pm 110
 9.4 Completion of the proof of Theorem 9.1 120
 9.5 Notes on Chapter 9 122

10 Some applications of Theorem 9.1 125
 10.1 A Mertens-type approximation 125
 10.2 The sieve setup and examples 129

11 A weighted sieve method 135
 11.1 Introduction and additional conditions 135
 11.2 A set of weights 137
 11.3 Arithmetic interpretation 140
 11.4 A simple estimate 144
 11.5 Products of irreducible polynomials 147
 11.6 Polynomials at prime arguments 149
 11.7 Other weights 150
 11.8 Notes on Chapter 11 151
Contents

Part II Proof of the Main Analytic Theorem 153

12 Dramatis personae and preliminaries 155
12.1 \(P \) and \(Q \) and their adjoints 155
12.2 Rapidly vanishing functions 158
12.3 The \(\Pi \) and \(\Xi \) functions 160
12.4 Notes on Chapter 12 161

13 Strategy and a necessary condition 163
13.1 Two different sieve situations 163
13.2 A necessary condition 164
13.3 A program for determining \(F \) and \(f \) 166

14 Estimates of \(\sigma_k(u) = j_k(u/2) \) 169
14.1 Lower bounds on \(\sigma \) 169
14.2 Differential relations 173
14.3 The adjoint function of \(j \) 177
14.4 Inequalities for \(1 - j \) 178
14.5 Relations between \(\sigma' \) and \(1 - \sigma \) 183
14.6 The \(\xi \) function 184
14.7 An improved upper bound for \(1 - j \) 190
14.8 Notes on Chapter 14 190

15 The \(p_\kappa \) and \(q_\kappa \) functions 193
15.1 The \(p \) functions 193
15.2 The \(q \) functions 195
15.3 Zeros of the \(q \) functions 196
15.4 Monotonicity and convexity relations 197
15.5 Some lower bounds for \(\rho_\kappa \) 199
15.6 An upper bound for \(\rho_\kappa \) 201
15.7 The integrands of \(\hat{\Pi} \) and \(\hat{\Xi} \) 202

16 The zeros of \(\hat{\Pi} - 2 \) and \(\hat{\Xi} \) 207
16.1 Properties of the \(\Pi \) and \(\Xi \) functions 207
16.2 Solution of some \(\Pi \) and \(\Xi \) equations 209
16.3 Estimation of \(\hat{\Pi}(2.7\kappa) \) 214

17 The parameters \(\alpha_\kappa \) and \(\beta_\kappa \) 217
17.1 The cases \(\kappa = 1, 1.5 \) 217
17.2 The cases \(\kappa = 2, 2.5, 3, \ldots \) 220
17.3 Proof of Proposition 17.3 222
17.4 Notes on Chapter 17 227

18 Properties of \(F_\kappa \) and \(f_\kappa \) 229
18.1 \(F_\kappa \) and \(f_\kappa \to 1 \) at \(\infty \) 229
18.2 \(Q_\kappa(u) > 0 \) for \(u > 0 \) 229
Appendix 1 Procedures for computing sieve functions 233
A1.1 DDEs and the Iwaniec inner product 234
A1.2 The upper and lower bound sieve functions 235
A1.3 Using the Iwaniec inner product 236
A1.4 Some features of Mathematica 239
A1.5 Computing $F_\kappa(u)$ and $f_\kappa(u)$ 240
A1.6 The function $Ein(z)$ 241
A1.7 Computing the adjoint functions 242
A1.8 Computing $j_\kappa(u)$ 250
A1.9 Computing α_κ and β_κ 254
A1.10 Weighted-sieve computations 255

Bibliography 259
Index 265
List of Illustrations

6.1 $F_2(u), f_2,$ and $1/\sigma_2(u)$ 79
14.1 The function $\xi(t)$ 184
14.2 The differences $\ell_2(t) - \xi(t)$ and $\ell_1(t) - \xi(t)$ 186
A1.1 $F_{\alpha}(u; \alpha, \beta)$ and $f_{\alpha}(u; \alpha, \beta)$ for two choices of α and β 236
A1.2 α_N and β_N 238
A1.3 $P_{\alpha}(u; \alpha, \beta)$ and $Q_{\alpha}(u; \alpha, \beta)$ for two choices of α and β 237
A1.4 $p_{\alpha}(u)$ for two values of κ 238
A1.5 $q_{\kappa}(u)$ for two values of κ 238
A1.6 $\langle Q, q_{\kappa} \rangle$ for two choices of α and β 239
A1.7 Two views of the integrand for computing $q_{\kappa}(u)$ 245
A1.8 Integrand for computing $q_{\kappa}(u)$ for three values of u/κ 248
A1.9 $j_{\alpha}(u)$ 250
A1.10 Integrand for computing $j_{\alpha}(u)$, “left-hand” path 251
A1.11 Integrand for computing $j_{\alpha}(u)$, “right-hand” path 253
A1.12 Region determined by the constraints of Theorem 11.1 256
A1.13 Lower bound function for the weighted sieve 257
List of Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>(r) values for small (g)</td>
<td>148</td>
</tr>
<tr>
<td>11.2</td>
<td>(r) values for small (g) and (h)</td>
<td>148</td>
</tr>
<tr>
<td>11.3</td>
<td>(r) values for small (G)</td>
<td>149</td>
</tr>
<tr>
<td>11.4</td>
<td>(r) values for small (g) and (k) and prime arguments</td>
<td>150</td>
</tr>
<tr>
<td>11.5</td>
<td>(r) values for small (G) and prime arguments</td>
<td>150</td>
</tr>
<tr>
<td>11.6</td>
<td>Values of (\tau_r) for which (r \approx N_{\min}(g, gk/\tau_r, \tau_r))</td>
<td>152</td>
</tr>
<tr>
<td>14.1</td>
<td>Values of (\xi), (2 \log t), (\ell_1), and (\ell_2)</td>
<td>185</td>
</tr>
<tr>
<td>15.1</td>
<td>The first few (q) functions</td>
<td>196</td>
</tr>
<tr>
<td>15.2</td>
<td>Values of (\rho_k)</td>
<td>197</td>
</tr>
<tr>
<td>15.3</td>
<td>(\rho_k + 1) compared with (2,7k)</td>
<td>201</td>
</tr>
<tr>
<td>16.1</td>
<td>Bounds on (\Pi_k(u_\kappa))</td>
<td>213</td>
</tr>
<tr>
<td>17.1</td>
<td>Values of (a_\kappa), (b_\kappa), and (\rho_k + 1)</td>
<td>227</td>
</tr>
<tr>
<td>A1.1</td>
<td>Accuracy of approximations to (q_\kappa(u))</td>
<td>249</td>
</tr>
</tbody>
</table>
Preface

Nearly a hundred years have passed since Viggo Brun invented his famous sieve, and yet the use of sieve methods is still evolving. At one time it seemed that, as analytic tools improved, the use of sieves would decline, and only their role as an auxiliary device would survive. However, as probability and combinatorics have penetrated the fabric of mathematical activity, so have sieve methods become more versatile and sophisticated, especially in conjunction with other theories and methods, until, in recent years, they have played a part in some spectacular achievements that herald new directions in mathematical discovery.

An account of all the exciting and diverse applications of sieve ideas, past and present, has yet to be written. In this monograph our aim is modest and narrowly focused: we construct (in Chapter 9) a hybrid of the Selberg [Sel47] and Rosser–Iwaniec [Iwa80] sieve methods to deal with problems of sieve dimension (or density) that are integers or half integers. This theory achieves somewhat sharper estimates than either of its ancestors, the former as given by Ankeny and Onishi [AO65]. The sort of application we have in mind is to show that a given polynomial with integer coefficients (some obvious cases excluded) assumes at integers or at primes infinitely many almost-prime values, that is, values that have few prime factors relative to the degree of the polynomial. To describe our procedure a little more precisely, we extend the pioneering method of Jurkat and Richert [JR65] for dimension 1 (that combined the Selberg sieve method with infinitely many iterations of the Brun–Sieve identity) to higher dimensions by means of the Rosser–Iwaniec approach; in the process we give an alternative account of that approach.

The restriction we make to integer and half integer dimensions simplifies the analytic component of our method; an account avoiding this
Preface

constraint exists [DHR88]–[DHR96], but is much more complicated. A justification for our restriction is that most sieve applications of the above kind occur in this context. We include an account of the case of dimension 1 because it serves as a model for what is to come and involves little extra work. While our treatment of that special case is not quite as sharp as in the classical exposition of Iwaniec [Iwa80] or that given more recently by Greaves [GrvCl], it is somewhat simpler.

It should be said that our results for higher dimensions, unlike the case of dimension 1, are almost certainly not best possible, not even in a single instance; and that our approach might not be the right one there. Nevertheless, our method does have good applications, is simple to use, and, despite some complications of detail, rests solely on elementary combinatorial inequalities and relatively simple analysis. The combinatorics we have developed may in due course find other applications.

The first comprehensive account of sieve methods, by the second author and H.-E. Richert [HR74], appeared in 1974 and has been long out of print. Although it is also out of date in some important respects, we have tended to follow its overall design, and we have drawn on it for examples and applications.

We are happy to express our thanks to the many who have contributed to this work: the aforementioned authors, on whose ideas we have built; H.-E. Richert, who shared in our discoveries; our former students Ferrell S. Wheeler and David M. Bradley for their extensive computational assistance; our patrons, the University of Illinois and the National Science Foundation, who supported our research; our colleague A. J. Hildebrand for \LaTeX{} and mathematical advice; Sidney Graham and Craig Franz for help in rooting out errors; and Cherri Davison, who skillfully and cheerfully converted our manuscript into \LaTeX{}. Also, we thank our wives for their support during the preparation of this book.

The Mathematica® package of sieve-related functions described in Appendix 1, as well as a list of comments and corrigenda, will be maintained at http://www.math.uiuc.edu/SieveTheoryBook. Finally, we request that readers advise us of any errors or obscurities they find. Our e-mail address is sievetheorybook@math.uiuc.edu.

® Mathematica is a registered trademark of Wolfram Research, Inc.
Notation

Standard terminology

\[\lceil x \rceil \text{ denotes the largest integer not exceeding } x. \]

\(a \mid b \) means \(a \) divides \(b \) evenly, i.e., \(b \equiv 0 \mod a \).

\((a, b) \) denotes the greatest common divisor of the integers \(a \) and \(b \) (when no confusion with notation for an open interval is possible) and \(\{a, b\} \) their least common multiple (see p. 14).

The symbols for the classical arithmetic functions have their usual meaning: \(\mu(\cdot) \) is the Möbius function, \(\tau(\cdot) \) the divisor function, \(\phi(\cdot) \) Euler's totient function, \(\pi(\cdot) \) the number of primes not exceeding \(x \), and \(\pi(x, k, \ell) \) the number of primes not exceeding \(x \) and congruent to \(\ell \) modulo \(k \).

We use \(\nu(\cdot) \) for the number of distinct prime divisors and \(\Omega(\cdot) \) for the number of prime divisors counted according to multiplicity. Throughout Part I of this manuscript, \(p(\cdot) \) and \(p^+(\cdot) \) are the least and largest prime factors respectively of an integer (see p. 19).

The constants \(\pi \) and \(\epsilon \) have their usual meanings, and \(\gamma \) is always Euler's constant.

\(O(\cdot) \) and \(o(\cdot) \) have their usual meanings relating to the size of a function, and \(O_\varepsilon(\cdot) \) indicates dependence of the implied constant upon \(\varepsilon \).

\(A, B, C, \ldots \) denote integer sequences or sets, and \(|A|, |B|, |C|, \ldots \) their cardinalities; \(A_d \) denotes the sequence of multiples of \(d \) in \(A \). That is, \(A_d := \{a \in A : a \mid d\} = \{a \in A : a \equiv 0 \mod d\} \).

\(\mathcal{P} \) is always a set of primes, the variable \(p \) denotes a prime throughout Part I of this book, and \(\mathcal{P}^c \) is the set of primes not in \(\mathcal{P} \).

\(\mathbb{N} \) is the sequence of natural numbers, \(\mathbb{Q} \) the set of rationals.
Notation

Sieve notation

The following lists indicate where sieve functions and sieve terminology are introduced and defined:

The notions of a function being divisor closed and/or combinatorial are defined on p. 27.

P_r denotes an integer having at most r prime factors, counted according to multiplicity; thus n is a P_r if $\Omega(n) \leq r$ (see p. 141).

Multiplicative functions

ω \hspace{1cm} p. 5
ω^* \hspace{1cm} p. 49
g \hspace{1cm} p. 15
g^* \hspace{1cm} p. 44
ϱ \hspace{1cm} pp. 37, 39, 64, 125

Remainder terms

$r_A(d)$ \hspace{1cm} p. 5
R \hspace{1cm} p. 14 (2,5)
$R_A(Y, z)$ \hspace{1cm} p. 109 (9.27)

Summatory functions

$G, G_\xi(P)$ \hspace{1cm} p. 15 (2.1c)
$G(\xi, z), G(\xi)$ \hspace{1cm} pp. 30 (4.2), 55.1, 61 (5.44)
$G^*(\xi, z)$ \hspace{1cm} p. 44 (5.7), 55.2
$G^*(\xi)$ \hspace{1cm} pp. 45, 52 (5.22), 54 (5.25)
$D(w_1, w)$ \hspace{1cm} p. 139
$E(x, d)$ \hspace{1cm} p. 97
Notation

Integrals (and associated expressions)

\[T(\xi) \]
\[T(\xi, z) \quad p. 55 \]
\[U(\xi, z) \quad p. 58 \]
\[\langle G, G\kappa \rangle \quad p. 158, 178, 234 (A1.3') \]
\[\Pi\kappa(u, v), \Xi\kappa(u, v) \quad p. 160 (12.24'), (12.25) \]
\[\Pi(u), \Xi(u) \quad p. 161 \]
\[\widehat{\Pi}(u), \widehat{\Xi}(u) \quad p. 161 \]

Products

\[P \quad p. 3 \]
\[V(\mathcal{P}) \quad p. 5 \]
\[P(z) \quad p. 26 \]
\[V(z) \quad p. 26 \]
\[V^*(z) \quad p. 56 \]

Sifting functions

\[S(A, \mathcal{P}) \quad p. 4 \]
\[S(A, \mathcal{P}, z) \quad pp. 7, 26 \]
\[S_i(\chi), S_{2i}(\chi), \quad i = 1, 2 \]
\[E_0(\omega) \quad pp. 70, (6.9) (6.10) (6.11) \]
\[E_0(\omega) \quad pp. 89, 110 (6.38), 116 (9.50) \]
\[E_0(\omega) \quad p. 89 (7.14) \]
\[E_0(\omega) \quad p. 106 (9.16) \]
\[E_0(\omega) \quad p. 109 (9.26) \]
\[L_0(\kappa)(x, u, z_\kappa) \quad p. 110 \]
\[W(A, \mathcal{P}, z, y) \quad p. 135 (11.1) \]
\[W_0(A, \mathcal{P}, z, y) \quad p. 135 \]
\[W(A, \mathcal{P}, z, y, \lambda) \quad p. 137 (11.6) \]
xx

Notation

Transcendental functions

\(\ell(u) \)
\(\sigma_\kappa(\cdot) \)
\(j_\kappa(\cdot) \)
\(j^{-1}_\kappa(u) \)
\(F_\kappa(u), f_\kappa(u) \)
\(\psi(\cdot) \)
\(\delta_1(y), \delta_2(y) \)
\(\Phi(t) \)
\(P_\kappa(u), Q_\kappa(u) \)
\(p_\kappa(u) \)
\(q_\kappa(u) \)
\(E^{\pm}(t) \)
\(r_\kappa(u) \)
\(\psi(u), \psi'(u), \xi(t) \)

Weight functions

\(w(a), w_{\xi}(a) \)

Constants/parameters

\(\Delta \)
\(\kappa, A \)
\(\alpha_\kappa, \beta_\kappa \)
\(u_\kappa \)
\(\mu_0 \)
\(\tau \)
\(\Lambda_r \)
\(N(u, r; \kappa, \mu_\xi, \tau) \)
\(F_\kappa \)
Notation

Basic conditions

\(\Omega(\kappa) \) p. 8, \$1.4
\(\Omega^*(\kappa) \) p. 44
\(Q_5, R_5, M_6 \) p. 136 (11.2) (11.3) (11.4)

"Modifying" functions

\(\chi(\cdot) \) p. 13
\(\overline{\chi}(\cdot) \) p. 19 (3.1)
\(\chi^\pm(\cdot), \eta^\pm(\cdot) (\kappa = 1) \) p. 71 \$6.3 (6.15)-(6.18)
\(\chi^\pm(\cdot), \eta^\pm(\cdot) (\kappa > 1) \) p. 74 \$6.4 (6.20)-(6.22)

For cases \(\kappa > 1 \), see also
\(\chi^\pm(\cdot), \eta^\pm(\cdot) \) pp. 103-104 (9.5)-(9.7)
\(\overline{\chi}^\pm(d) \) p. 104 (9.8)