INDEX

Abnormal genes, 17, 20-21, 20f–21f
Acetylcholine
 anticholinergic agents and, 48f
 dopamine receptor blockage and, 48f
 relationship with dopamine, 47f
 release, 46
Affective flattening, 5
Aggression
 mania and, 99, 100f
 symptoms in schizophrenia, 8f, 9
 treatment for, 86, 86f
Agitation, atypical antipsychotics in, 119f
Agranulocytosis, 70
AIDS therapy, 131
Akathisia, 13
Alcohol abuse, mania and, 99, 100f
Allosteric modulators, 24, 27f
Alogia, 5
Alpha 1 adrenergic blocking, antipsychotic agents and, 46f, 49, 50f
Alpha-aminoo-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), 23, 26f
Alpha-7-nicotinic cholinergic agonists, 130
Alzheimer’s disease
 psychosis and, 2, 3f
 Aggressive symptoms and, 8f, 9
 cholinergic deficiency and, 130, 131
 cognitive symptoms and, 6, 7f
 excitotoxicity and, 23, 28, 29f–33f
 positive symptoms and, 4–5, 6f
Anorexia, 16
Amisulpride, 96, 97f
Amyotrophic lateral sclerosis, 23
Anhedonia, 5

Anticholinergic agents, 46
 acetylcholine and, 48f
Anticonvulsants
 bipolar combinations and, 119, 120, 122, 123f
 in mood storms, 100f
 as mood stabilizers, 102t, 108, 109, 109f,
 110f–114f, 111–113, 115, 115f, 116f
Antidepressants
 combinations, 122, 123f
 in bipolar disorder, 120, 122
Antihistaminic properties of conventional antipsychotic agents, 46f, 49, 49f
Antipsychotic agents
 atypical drugs (See Atypical antipsychotic drugs)
 conventional drugs (See Conventional antipsychotic drugs)
 future antipsychotics, 127–132
 future combination chemotherapies, 131–132
 novel neurotransmitter mechanisms, 130–131
 novel serotonergic and dopaminergic mechanisms, 127–129
 other antipsychotics, 127, 128f–129f
 in treatment-resistant schizophrenia, 124–127, 124f–126f
Anxious self-punishment, 4
Anxious symptoms, in schizophrenia, 8f, 9–10
Apathy, 3–4
Apoptosis, blocking, 29–30, 33f, 34f
Aripiprazole, 96, 96f
Attentional impairment, 5, 9f
Attention deficit hyperactivity disorder, 8f, 9
Atypical antipsychotic drugs, 51–66
 binding to postsynaptic dopamine 2 receptors, 60f
 bipolar combinations and, 120, 123f
Index

Alpical antipsychotic drugs (continued)
in bipolar disorder, 97, 118-119, 119f-122f
in clinical practice, 80-86
clozapine, 68-70, 69f
for cognitive symptoms, 84-85, 84f
cytochrome P450 1A2, 76, 76f-77f
cytochrome P450 3A4, 77-80, 79f-80f
cytochrome P450 2D6, 76, 77f-78f
four key dopamine pathways, 52-53
for hostility, aggression, and poor impulse control, 86, 86f
hypothetical action over time, 90f
in ion flux reduction, 122f
in manic symptoms of psychotic mania, 118-119, 119f-122f
mesocortical pathway, 59-61, 61f-63f
mesolimbic pathway, 62, 64f
for mood disorders, 82-84, 83f
in mood stabilization, 118-119, 119f-122f
for negative symptoms of schizophrenia, 85-86, 85f
nigrostriatal pathway (See Nigrostriatal pathway)
in nonpsychotic mania, 118-119, 121f, 122f
olanzapine, 69f, 72, 73f, 120, 121f-122f
pharmacokinetic considerations for, 75-80, 76f-80f
for positive symptoms of schizophrenia, 81-82, 82f
quetiapine, 69f, 72-73, 74f
receptor binding properties of, 87-90, 88f, 90f
risperidone, , 70-72, 71f
serotonergic control of dopamine release, 52-66, 53f-58f, 61f, 63f-65f
serotonin-dopamine antagonism, 52-53, 52f
tuberoinfundibular pathway, 61-62
ziprasidone, 73-75, 74f-75f
Avolution, 5

Basal ganglia, dopamine deficiency in, 13
Benztropine antipsychotics, 9f
Benzdiazepines, 117, 123f
bipolar combinations and, 119, 122, 123f
Biological basis of schizophrenia, 10-16
Bipolar combination treatments, 119-122, 123f
Bipolar disorder
aggressive symptoms and, 8f, 9
brainstorm of ions and, 96-99, 98f-106f
depressive symptoms and, 8f, 9
lithium in, 102, 102f, 107, 107f-108f, 109f
positive symptoms and, 4, 6f
Blame, 4
BM1-14.802, 130
Brain development, early, 16-21, 17f-21f
Burnout, 22, 22f

Cannabinoid antagonists, 130
Carbamazepine, 109f, 112, 115f, 123f
Carbonic anhydrase inhibitor, 116f
Caspase enzymes, 30
Caspase inhibitors, 29
Cellular events, during excitotoxicity, 28, 30f-32f
Chemotherapies, combination, 131-132
Childhood psychosis, 5, 6f, 8f, 9-10
Chlorpromazine, 39, 41f
Cholecystokinin, 130
Chorea, 13
Clozapine, 68-70, 69f
Cognitive symptoms in schizophrenia, 6, 7f
treatment for, 84-85, 84f
Conceptual disorganization, 3
Conduct disorders, in children, 9
Conventional antipsychotic drugs, 39-50, 41t, 51f
alpha 1 adrenergic blocking properties, 46f, 49, 50f
antihistaminic properties, 46f, 49, 49f
blocking all four dopamine pathways, 44-45
dopamine 2 receptor blockade, 39, 40f, 41-45, 42f-45f, 59, 59f
haloperidol, 41t, 49, 50f-51f
hypothetical action over time, 89f
icon of, 46f
“leak in” atypical antipsychotics, 124, 126f
in mood stabilization, 117-118, 117f-118f, 120, 123f
muscarinic cholinergic blocking properties of, 45-49, 46f-48f
pharmacologic properties of, 45-46, 46f-50f, 49
receptor binding properties of, 87f, 88-89, 89f
risks and benefits of, 45
side effects of, 45-46, 47f, 49, 49f, 50f
“top up” atypical antipsychotics, 125, 126f
Cross-titration, 124, 124f, 125f
Cytochrome P450 1A2, 76, 76f-77f
Cytochrome P450 3A4, 77-80, 79f-80f
Cytochrome P450 2D6, 76, 77f-78f

Dendrites, damage to, 28, 29f
Depression, See also Antidepressants
depressive psychosis, 3-4
mania and, 97-99, 98f-99f
symptoms in schizophrenia, 8f, 9-10
Disorganized-excited psychosis, 3
Disorientation, 3
Divalproex, 108, 109t, 111-112, 111f-114f, 119-120, 123f
Dopamine. See also Dopamine 2 receptors
eacetycholine release and, 45, 46, 47f-48f
hypothesis of positive psychosis symptoms, 10
novel mechanisms, 127-128
secondary deficiency, 61f
stabilizers, 91-96, 91f-96f
stimulant, 91f
Dopamine 2 receptors
binding in nigrostriatal pathway
atypical antipsychotics, 60f
conventional antipsychotics, 59f

© Cambridge University Press
cambridge.org
binding properties, 87–90, 87f-90f
blockade of, 39–44, 40f-44f, 88–90, 89f-90f, 118f
dilemma of, 44–45
hyperprolactinemia and, 44f
long-term blockade, 43f
mesocortical pathway, 42f
negative symptoms and, 42f
in nigrostriatal pathway, 42f
pure D2 blocker, 40f
dopamine system stabilizers, 91–96, 91f-96f
hit and run actions, 87–90, 87f-90f
improved positive symptoms and, 62–64
extrapyramidal symptoms and, 41, 42f–43f, 43, 51, 55–59, 57f-58f
hyperprolactinemia and, 43-44, 44f, 61–62, 63f-65f
Dorsolateral prefrontal cortex, 11, 13f, 14f
D3 receptors, 128
Drug abuse
mania and, 99, 100f
Drug-induced psychoses, 5
DU-127090, 96
Dyskinesias, 13
Dysphoria, 99, 99f
Dystonia, 13

Excitatory neurotransmission, 23, 28, 28f, 29f-32f
Excitement, 3
Excitotoxicity, 22–23, 29f-32f
cellular events during, 30f-32f
glutamate system and, 28, 28f-32f
Executive functioning, 6
Extrapyramidal symptoms, 41, 42f–43f, 43, 46, 48f, 118
Fananserin, 128
Free radicals
in excitotoxicity, 31f, 32f, 34f
scavengers, 29, 34f

Gabapentin, 113, 110f, 123f
Galactorrhea, 16
Gamma-aminobutyric acid (GABA), 109, 110f, 111, 111f, 113, 115f, 116f
Genetic basis in schizophrenia, 17–21, 20f-21f
Glutamate
antagonists, 29, 33f
production, 24f
receptors, 23–25, 26f–27f
removal, 23, 25f
spectrum of excitation, 29f
systems, excitotoxic overactivity of, 11
Glutamatergic neurotransmission, 23–28
excitotoxicity and glutamate system, 22, 28, 28f–32f
 glutamate receptors, 23–25, 26f–27f
 glutamate removal, 23, 25f
Glutamine, 24f
Glutamine synthetase, 24f
Glycine, 24, 27f
“Goldilocks” antipsychotics, 91–96
G proteins, 104f, 107f
Grandiose expansiveness, 3

Hallucinations, in schizophrenia, 4
Haloperidol, 49
icon, 51f
structural formula of, 50f
Hit and run binding, 87–90
HIV/AIDS therapy, 131
Hostility
belligerence, 3
in schizophrenia, 8f
symptoms in schizophrenia, 9
treatment for, 86, 86f
Huntington’s disease, 20
Hyperkinetic movement disorders, 13
Hyperprolactinemia, 43–44, 44f
pharmacology of, 61–62, 63f-65f
Hypomania, 97, 98f. See also Mania
Iloperidone, 127–128
Improved negative symptoms, pharmacology of, 59–61, 61f-63f
Impulse control, treatment for, 86, 86f
Inositol monophosphatase, 107
Ion channels
ligand-gated, 108, 110f
voltage-gated (See Voltage-gated ion channels)
Ion flow, normal neuronal, 103f, 106f
Ion flux
atypical antipsychotic drugs in, 121f–122f
unstable moods and, 99, 100f–102f, 106f
valproic acid and, 111–112, 112f–115f

Kainate, 23, 26f
L-745,870, 128
Lamotrigine, 109f, 112–113, 115f, 123f
Lazaroids, 30, 34f
Ligand-gated ion channels, 27f, 28f, 108, 110f
Lithium, 102, 102t, 107, 107f–109f
bipolar combinations and, 117f, 119, 119f, 123f
Long-term potentiation, 23
Lou Gehrig’s disease, 23
Low extrapyramidal symptoms, pharmacology of, 55–59, 57f-60f
Loxapine, 127, 128f
LU-111,995, 128
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>Magnesium, 24, 27f</td>
</tr>
<tr>
<td>140</td>
<td>Mania, 97–101, 102f</td>
</tr>
<tr>
<td>140</td>
<td>atypical antipsychotics in, 118–119, 119f–122f characterisation of, 97, 98f</td>
</tr>
<tr>
<td>140</td>
<td>glutamate excitation and, 29f</td>
</tr>
<tr>
<td>140</td>
<td>anticonvulsants in, 102r, 108–111, 109t</td>
</tr>
<tr>
<td>140</td>
<td>mixed state, 99, 99f</td>
</tr>
<tr>
<td>140</td>
<td>mood stabilizing drugs and (See Mood stabilizing drugs)</td>
</tr>
<tr>
<td>140</td>
<td>other clinical features, 100f</td>
</tr>
<tr>
<td>140</td>
<td>psychosis associated with, 99, 100f, 102f, 117f, 117–119, 119f, 120f</td>
</tr>
<tr>
<td>140</td>
<td>rapid cycling, 98f</td>
</tr>
<tr>
<td>140</td>
<td>Mazapertine, 128</td>
</tr>
<tr>
<td>140</td>
<td>MDL-100,907, 128</td>
</tr>
<tr>
<td>140</td>
<td>Mesocortical dopamine pathway, 10–13, 11f, 13f, 14f, 42f</td>
</tr>
<tr>
<td>140</td>
<td>improved negative symptoms and, 59–61, 61f–63f</td>
</tr>
<tr>
<td>140</td>
<td>Mesolimbic dopamine pathway, 10, 11f, 12f, 40f</td>
</tr>
<tr>
<td>140</td>
<td>improved positive symptoms and, 62, 64</td>
</tr>
<tr>
<td>140</td>
<td>Metabotropic glutamate receptor, 26f</td>
</tr>
<tr>
<td>140</td>
<td>Mixed state, 99, 99f</td>
</tr>
<tr>
<td>140</td>
<td>Mood disorders in schizophrenia, treatment for, 82–84, 83f</td>
</tr>
<tr>
<td>140</td>
<td>Mood-stabilizing drugs, 102–122, 102x, 109t, 123f</td>
</tr>
<tr>
<td>140</td>
<td>anticonvulsants, 102x, 108–113, 109x, 110f–116f, 115</td>
</tr>
<tr>
<td>140</td>
<td>atypical antipsychotics, 118–119, 119f–122f</td>
</tr>
<tr>
<td>140</td>
<td>benzodiazepines, 117, 119, 122, 123f</td>
</tr>
<tr>
<td>140</td>
<td>bipolar combinations, 119–122, 123f</td>
</tr>
<tr>
<td>140</td>
<td>carbamazepine, 109t, 112, 115f, 123f</td>
</tr>
<tr>
<td>140</td>
<td>conventional antipsychotics, 117–118, 117f–118f, 120, 123f</td>
</tr>
<tr>
<td>140</td>
<td>gabapentin, 113, 116f, 123f</td>
</tr>
<tr>
<td>140</td>
<td>lamotrigine, 109t, 112–113, 115f, 123f</td>
</tr>
<tr>
<td>140</td>
<td>lithium, 102, 102r, 107, 107f–109f</td>
</tr>
<tr>
<td>140</td>
<td>topiramate, 113, 115, 116f</td>
</tr>
<tr>
<td>140</td>
<td>valproic acid, 109t, 111–112, 111f–114f, 123f</td>
</tr>
<tr>
<td>140</td>
<td>Muscarinic cholinergic receptors, blockade of, 45–49, 46f–48f</td>
</tr>
<tr>
<td>140</td>
<td>Negative symptoms, 5f, 5–6, 7f, 9t, 41, 42f, 59–61, 61f–63f</td>
</tr>
<tr>
<td>140</td>
<td>Nemonapride, 128</td>
</tr>
<tr>
<td>140</td>
<td>Neurodegeneration blocking, 29–30, 33f, 34f</td>
</tr>
<tr>
<td>140</td>
<td>causes of schizophrenia, 35f</td>
</tr>
<tr>
<td>140</td>
<td>hypothesis, 21–29</td>
</tr>
<tr>
<td>140</td>
<td>excitotoxicity, 22–23, 29f–33f</td>
</tr>
<tr>
<td>140</td>
<td>glutamatergic neurotransmission and, 23–28, 24f–32f</td>
</tr>
<tr>
<td>140</td>
<td>Neurodevelopmental hypothesis, of schizophrenia, 16–21, 17f–21f</td>
</tr>
<tr>
<td>140</td>
<td>Neurodevelopmental/neurodegenerative therapy hypothesis, 33, 35f</td>
</tr>
<tr>
<td>140</td>
<td>Neurokinins, 130</td>
</tr>
<tr>
<td>140</td>
<td>Neurolepsia, 39</td>
</tr>
<tr>
<td>140</td>
<td>Neuroleptic antipsychotics, bipolar combinations and, 120, 123f</td>
</tr>
<tr>
<td>140</td>
<td>Neuroleptic-induced deficit syndrome, 41</td>
</tr>
<tr>
<td>140</td>
<td>Neuroleptic-induced tardive dyskinesia, 14</td>
</tr>
<tr>
<td>140</td>
<td>Neuroleptic malignant syndrome, 45</td>
</tr>
<tr>
<td>140</td>
<td>Neurons migration of, 16, 17f, 18f</td>
</tr>
<tr>
<td>140</td>
<td>neuroprotection, 29f</td>
</tr>
<tr>
<td>140</td>
<td>Neurotransmitter antagonism, 130</td>
</tr>
<tr>
<td>140</td>
<td>Neurotransmission, glutamate, 23–28, 24f–32f</td>
</tr>
<tr>
<td>140</td>
<td>NGD-94-4, 128</td>
</tr>
<tr>
<td>140</td>
<td>Nigrostriatal dopamine pathway, 13–14, 15f</td>
</tr>
<tr>
<td>140</td>
<td>dopamine 2 receptor blockade in, 41, 42f, 43, 43f</td>
</tr>
<tr>
<td>140</td>
<td>pharmacology of low extrapyramidal symptoms, 55–59, 53f–60f</td>
</tr>
<tr>
<td>140</td>
<td>serotonin–dopamine interactions in, 53–54, 53f–56f</td>
</tr>
<tr>
<td>140</td>
<td>N-methyl-D-aspartate (NMDA), 23–28, 26f, 27f, 28f, 29, 33f</td>
</tr>
<tr>
<td>140</td>
<td>Olanzapine, 69f, 72, 73f, 120, 121f–122f</td>
</tr>
<tr>
<td>140</td>
<td>OPC-14523, 130</td>
</tr>
<tr>
<td>140</td>
<td>OPC-14597, 96</td>
</tr>
<tr>
<td>140</td>
<td>Organic dementias, 5, 9</td>
</tr>
<tr>
<td>140</td>
<td>OSU-6162, 96</td>
</tr>
<tr>
<td>140</td>
<td>Panic, 29f</td>
</tr>
<tr>
<td>140</td>
<td>Paranoid projection, 3</td>
</tr>
<tr>
<td>140</td>
<td>Paranoid psychosis, 3</td>
</tr>
<tr>
<td>140</td>
<td>Parkinson's disease, 13, 23, 41</td>
</tr>
<tr>
<td>140</td>
<td>Partial agonist action, 95</td>
</tr>
<tr>
<td>140</td>
<td>PCP site, 25, 27f</td>
</tr>
<tr>
<td>140</td>
<td>Picrotoxin, 127, 129f</td>
</tr>
<tr>
<td>140</td>
<td>Phosphatidyl inositol, 105f, 107</td>
</tr>
<tr>
<td>140</td>
<td>PNU-101,387G, 128</td>
</tr>
<tr>
<td>140</td>
<td>Polyamines, 24, 27f</td>
</tr>
<tr>
<td>140</td>
<td>Positive symptoms pharmacology of, 62–64 in psychosis, 9t in schizophrenia, 4–5, 5f, 6f, 9t, 10, 11f–12f, 40f</td>
</tr>
<tr>
<td>140</td>
<td>Postsynaptic serotonin 2A receptors, 52–62, 52f–59f, 61f–65f, 64</td>
</tr>
<tr>
<td>140</td>
<td>Precamol, 96</td>
</tr>
<tr>
<td>140</td>
<td>Presymptomatic treatment, in schizophrenia, 30, 33</td>
</tr>
<tr>
<td>140</td>
<td>Prolactin conventional antipsychotic drugs and, 43–44, 44f, 64f</td>
</tr>
<tr>
<td>140</td>
<td>dopamine inhibition of, 63f elevated level, 15f, 16</td>
</tr>
<tr>
<td>140</td>
<td>serotonin 2A antagonism and, 61–62, 65f</td>
</tr>
<tr>
<td>140</td>
<td>serotonin stimulation of, 64f</td>
</tr>
<tr>
<td>140</td>
<td>Psychosis associated disorders, 2, 3t clinical description of, 2–4 defining symptom in, 2, 2t</td>
</tr>
</tbody>
</table>
depressive psychosis, 3–4, 8f, 9–10
related disorders, 2t

disorganized, 3
mania and, 99, 100f, 102f, 117f, 117–119, 119f, 120f
negative symptoms in, 5f, 5–6, 7f, 9t
paranoid psychosis, 3
positive symptoms in, 4–5, 5f–6f, 9t
Psychotomimetic agent phencyclidine (PCP), 25, 27f, 130

Quetiapine, 69f, 72–73, 74f

Rapid cycling, 98f, 99, 107, 111, 114f
Rapid dissociation, 87–90, 88f, 90f
Receptor binding properties
atypical antipsychotics, 87–90, 88f
conventional antipsychotics, 87f, 87–90
Retardation, 3–4
Risperidone, 70–72, 71f
Ritanserin, 128

Schizoaffective disorders, 4, 6f, 8f, 9
Schizophrenia
aggressive and hostile symptoms, 8f, 9
cognitive symptoms, 6, 7f
defined, 2–4
depressive and anxious symptoms, 8f, 9–10
dopamine pathways in, 10–16, 11f–15f
mesocortical dopamine pathway, 10–11, 11f, 13, 13f, 14f
mesolimbic dopamine pathway, 10, 11f, 12f
nigrostriatal dopamine pathway, 10, 13–14, 15f
tuberoinfundibular dopamine pathway, 14–16, 15f
excitotoxicity and, 22–23, 29f–33f
experimental therapeutic approaches, 29–33, 33f, 34f
five symptom dimensions, 4–10, 5f–8f, 9t
future combination chemotherapies for, 131–132
in general population, 4
glutamatergic neurotransmission and, 23–28, 24f–34f
negative symptoms, 5f, 5–6, 7f, 9t
neurodegenerative causes of, 21–30, 24f–35f
neurodegenerative hypotheses of, 21–29
neurodevelopmental hypothesis of, 16–21, 17f–21f
novel neurotransmitter mechanisms and, 130–131
novel serotoninergic and dopaminergic mechanisms and, 127–128
positive symptoms, 4–5, 5f–6f, 9t
stages of, 21–22, 22f
treatment in clinical practice, 80–86 (See also Antipsychotic agents)

for cognitive symptoms, 84–85, 84f
for hostility, aggression, and poor impulse control, 86, 86f
for mood disorders, 82–84, 83f
for negative symptoms, 85–86, 85f
for positive symptoms, 81–82, 82f
treatment resistant, 124–127, 124f–126f
Second-messenger system, 102, 103f–108f, 107

Sexual dysfunction, 16, 44
Sigma antagonists, 130
SR 141716A, 130
SR 142948, 130
SR 3742A, 130
Stevens-Johnson syndrome, 113
Stroke, 23, 28, 29f
Substance P, 130
Synapses
formation, 16
inadequate selection, 17f
normal formation of, 18f
wrong connections, 19f

Tardive dyskinesia
conventional antipsychotics and, 46, 117, 118f
D2 receptor blockade and, 43, 43f
neuroleptic-induced, 14
Therapeutic approaches in schizophrenia, 29–33. See also Schizophrenia
blocking neurodegeneration and apoptosis, 29–30, 33f, 34f
combined neurodevelopmental/neurodegenerative hypothesis, 33, 35f
presymptomatic treatment, 30, 33
Therapeutics, genetic approach to, 21, 21f
3-ppp, 96
Tics, 13
Topiramate, 113, 115, 116f, 123f
Toxic insult, 17f
Tuberoinfundibular dopamine pathway, 14–16, 15f
tuberoinfundibular pathway, reduced
hyperprolactinemia and, 43–44, 44f, 61–62, 63f–65f

© Cambridge University Press
<table>
<thead>
<tr>
<th>142</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twin studies. See Genetics</td>
<td>WAY135,452, 96</td>
</tr>
<tr>
<td>Weight gain, 44, 49, 49f</td>
<td></td>
</tr>
<tr>
<td>bipolar combinations and, 119–120, 123f</td>
<td></td>
</tr>
<tr>
<td>Verbal fluency, impaired, 6</td>
<td></td>
</tr>
<tr>
<td>Vitamin E, 29</td>
<td>Ziprasidone, 73–75, 74f–75f</td>
</tr>
<tr>
<td>Voltage-gated ion channels, 100f–101f, 102f–108g, 112f–113f</td>
<td>Zoepine, 127, 129f</td>
</tr>
</tbody>
</table>