M_{24} and all that

This chapter can be considered as a usual warming up with Mathieu and Conway groups, prior to entering the realm of the Monster. It is actually aimed at a specific goal to classify the groups which satisfy the following condition:

$$T \sim 2^{1+22}_+.M_{24}$$

The quotient $O_2(T)/Z(T)$ (considered as a GF(2)-module for $T/O_2(T) \cong M_{24}$) has the irreducible Todd module C_{11}^* as a submodule and the irreducible Golay code module C_{11} as the corresponding factor module. It turns out that there are exactly two such groups T: one splits over $O_2(T)$ with $O_2(T)/Z(T)$ being the direct sum $C_{11}^* \oplus C_{11}$, while the other does not split, and the module $O_2(T)/Z(T)$ is indecomposable. The latter group is a section in the group which is the first member 2_+^{1+24} . Co_1 of the Monster amalgam.

1.1 Golay code

Let *F* be a finite field, and let (m, n) be a pair of positive integers with $m \le n$. A linear (m, n)-code over *F* is a triple $(V_n, \mathcal{P}, \mathcal{C})$ where V_n is an *n*-dimensional *F*-space, \mathcal{P} is a basis of V_n , and \mathcal{C} is a *m*-dimensional subspace in V_n . Although the presence of V_n and \mathcal{P} is always assumed, it is common practice to refer to such a code simply by naming \mathcal{C} . It is also assumed (often implicitly) that V_n is endowed with a bilinear form *b* with respect to which \mathcal{P} is an orthonormal basis

$$b(p,q) = \delta_{pq}$$
 for $p, q \in \mathcal{P}$.

CAMBRIDGE

2

M₂₄ and all that

The dual code of C is the orthogonal complement of C in V_n with respect to b, that is

$$\{e \mid e \in V_n, b(e, c) = 0 \text{ for every } c \in \mathcal{C}\}.$$

Since *b* is non-singular, the dual of an (m, n)-code is an (n - m, n)-code. Therefore, C is self-dual if and only if it is totally singular of dimension half the dimension of V_n . The weight wt(c) of a codeword $c \in C$ is the number of non-zero components of *c* with respect to the basis \mathcal{P} . The minimal weight of C is defined as

$$m(\mathcal{C}) = \min_{c \in \mathcal{C} \setminus \{0\}} wt(c).$$

The codes over the field of two elements are known as *binary codes*. In the binary case, the map which sends a subset of \mathcal{P} onto the sum of its elements provides us with an identification of V_n with the power set of \mathcal{P} (the set of all subsets of \mathcal{P}). Subject to this identification, the addition is performed by the symmetric difference operator, the weight is just the size and *b* counts the size of the intersection taken modulo 2, i.e. for $u, v \subseteq \mathcal{P}$ we have

$$u + v = (u \cup v) \setminus (u \cap v);$$
$$wt(u) = |u|;$$
$$b(u, v) = |u \cap v| \mod 2.$$

A binary code is said to be *even* or *doubly even* if the weights (i.e. sizes) of all the codewords are even or divisible by four, respectively. Notice that a doubly even code is always totally singular with respect to *b*.

A binary (12, 24)-code is called a (binary) *Golay code* if it is doubly even, self-dual of minimal weight 8. Up to isomorphism there exists a unique Golay code which we denote by C_{12} . In view of the above discussion, C_{12} can be defined as a collection of subsets of a 24-set \mathcal{P} such that C_{12} is closed under the symmetric difference, the size of every subset in C_{12} is divisible by four but not four and $|C_{12}| = 2^{12}$. The subsets of \mathcal{P} contained in C_{12} will be called *Golay sets*.

There are various constructions for the Golay code. We are going to review some basic properties of C_{12} and of its remarkable automorphism group M_{24} . The properties themselves are mostly construction-invariant while the proofs are not. We advise the reader to refer to his favorite construction to check the properties (which are mostly well-known anyway) while we will refer to Section 2.2 of [Iv99].

1.1 Golay code

The weight distribution of C_{12} is

 $0^{1} 8^{759} 12^{2576} 16^{759} 24^{1}$,

which means that besides the improper subsets \emptyset and \mathcal{P} the family of Golay sets includes 759 subsets of size 8 (called *octads*), 759 complements of octads, and 2576 subsets of size 12 called *dodecads* (splitting into 1288 complementary pairs). If \mathcal{B} is the set of octads, then (\mathcal{P}, \mathcal{B}) is a Steiner system of type S(5, 8, 24) (this means that every 5-subset of \mathcal{P} is in a unique octad). Up to isomorphism (\mathcal{P}, \mathcal{B}) is the unique system of its type and C_{12} can be redefined as the closure of \mathcal{B} with respect to the symmetric difference operator in the unique Steiner system of type S(5, 8, 24).

If $(V_{24}, \mathcal{P}, \mathcal{C}_{12})$ is the full name of the Golay code, then

$$C_{12}^* := V_{24}/C_{12}$$

is known as the 12-dimensional *Todd module*. We continue to identify V_{24} with the power set of \mathcal{P} and for $v \subseteq \mathcal{P}$ the coset $v + \mathcal{C}_{12}$ (which is an element of \mathcal{C}_{12}^*) will be denoted by v^* . It is known that for every $v \subseteq \mathcal{P}$ there is a unique integer $t(v) \in \{0, 1, 2, 3, 4\}$ such that $v^* = w^*$ for some $w \subseteq \mathcal{P}$ with |w| = t(v). Furthermore, if t(v) < 4, then such w is uniquely determined by v; if t(v) = 4, then the collection

$$\mathcal{S}(v) = \{ w \mid w \subseteq \mathcal{P}, |w| = 4, v^* = w^* \}$$

forms a *sextet*. The latter means that S(v) is a partition of \mathcal{P} into six 4-subsets (also known as *tetrads*) such that the union of any two tetrads from S(v) is an octad. Every tetrad w is in the unique sextet S(w) and therefore the number of sextets is

$$1771 = \binom{24}{4}/6.$$

The automorphism group of the Golay code (which is the set of permutations of \mathcal{P} preserving \mathcal{C}_{12} as a whole) is the sporadic simple Mathieu group M_{24} . The action of M_{24} on \mathcal{P} is 5-fold transitive and it is similar to the action on the cosets of another Mathieu group M_{23} . The stabilizer in M_{24} of a *pair* (a 2-subset of \mathcal{P}) is an extension of the simple Mathieu group M_{22} of degree 22 (which is the elementwise stabilizer of the pair) by an outer automorphism of order 2. The stabilizer of a *triple* is an extension of $L_3(4)$ (sometimes called the Mathieu group of degree 21 and denoted by M_{21}) by the symmetric group S_3 of the triple.

The sextet stabilizer M(S) is an extension of a group K_S of order $2^6 \cdot 3$ by the symmetric group S_6 of the set of tetrads in the sextet. The group K_S (which

CAMBRIDGE

4

M₂₄ and all that

is the kernel of the action of M(S) on the tetrads in the sextet is a semidirect product of an elementary abelian group Q_S of order 2⁶ and a group X_S of order 3 acting on Q_S fixed-point freely. If we put

 $Y_{\mathcal{S}} = N_{\mathcal{M}(\mathcal{S})}(X_{\mathcal{S}}),$

then $Y_S \cong 3 \cdot S_6$ is a complement to Q_S in M(S); Y_S does not split over X_S and $C_{Y_S}(X_S) \cong 3 \cdot A_6$ is a perfect central extension of A_6 . Furthermore, Y_S is the stabilizer in M_{24} of a 6-subset of \mathcal{P} not contained in an octad (there is a single M_{24} -orbit on the set of such 6-subsets).

Because of the 5-fold transitivity of the action of M_{24} on \mathcal{P} , and since $(\mathcal{P}, \mathcal{B})$ is a Steiner system, the action of M_{24} on the octads is transitive. The stabilizer of an octad is the semidirect product of an elementary abelian group $Q_{\mathcal{O}}$ of order 2^4 (which fixes the octad elementwise) and a group $K_{\mathcal{O}}$ which acts faithfully as the alternating group A_8 on the elements in the octad and as the linear group $L_4(2)$ on $Q_{\mathcal{O}}$ (the latter action is by conjugation). Thus, the famous isomorphism $A_8 \cong L_4(2)$ can be seen here. The action of M_{24} on the dodecads is transitive, with the stabilizer of a dodecad being the simple Mathieu group M_{12} acting on the dodecad and on its complement as on the cosets of two non-conjugate subgroups each isomorphic to the smallest simple Mathieu group M_{11} . These two M_{11} -subgroups are permuted by an outer automorphism of M_{12} realized in M_{24} by an element which maps the dodecad onto its complement.

The following lemma is easy to deduce from the description of the stabilizers in M_{24} of elements in C_{12} and in C_{12}^* .

Lemma 1.1.1 Let u and v be elements of C_{12} , and let M(u) and M(v) be their respective stabilizers in M_{24} . Then:

- (i) M(u) does not stabilize non-zero elements of C_{12}^* ;
- (ii) if u and v are octads, then $(u \cap v)^*$ is the only non-zero element of C_{12}^* stabilized by $M(u) \cap M(v)$.

A presentation d = u + v of a dodecad as the sum (i.e. symmetric difference) of two octads determines the pair $u \cap v$ in the dodecad complementary to d and also a partition of d into two *heptads* (6-subsets) $u \setminus v$ and $v \setminus u$. If \mathcal{K} is the set of all heptads obtained via such presentations of d, then (d, \mathcal{K}) is a Steiner system of type S(5, 6, 12) (every 5-subset of d is in a unique heptad). There is a bijection between the pairs of complementary heptads from \mathcal{K} and the set of pairs in $\mathcal{P} \setminus d$ such that if $d = h_1 \cup h_2$ corresponds to $\{p, q\}$, then $h_1 \cup \{p, q\}$ and $h_2 \cup \{p, q\}$ are octads, and d is their symmetric difference. 1.2 Todd module

Lemma 1.1.2 Let d be a dodecad, $\{p,q\}$ be a pair disjoint from d, and let $d = h_1 \cup h_2$ be the partition of d into heptads which correspond to $\{p,q\}$. Let A be the stabilizer in M_{24} of d and $\{p,q\}$, and let B be the stabilizer in M_{24} of h_1 , h_2 , and $\{p,q\}$. Then:

(i) $A \cong \operatorname{Aut}(S_6)$, while $B \cong S_6$;

(ii) $A \setminus B$ contains an involution.

Proof. (i) is Lemma 2.11.7 in [Iv99] while (ii) is a well-known property of the automorphism group of S_6 .

Lemma 1.1.3 ([CCNPW]) The following assertions hold:

- (i) the outer automorphism group of M_{24} is trivial;
- (ii) the Schur multiplier of M_{24} is trivial.

1.2 Todd module

The 24-dimensional space V_{24} containing C_{12} and identified with the power set of \mathcal{P} carries the structure of the GF(2)-permutation module of M_{24} acting on \mathcal{P} . With respect to this structure, C_{12} is a 12-dimensional submodule known as the *Golay code module*. Let $V^{(1)}$ and $V^{(23)}$ be the subspaces in V_{24} formed by the improper and even subsets of \mathcal{P} , respectively. Then $V^{(1)}$ and $V^{(23)}$ are the M_{24} -submodules contained in C_{12} and containing C_{12} , respectively. Put

$$C_{11} = C_{12}/V^{(1)}$$
 and $C_{11}^* = V^{(23)}/C_{12}$.

The elements of $V_{24}/V^{(1)}$ are the partitions of \mathcal{P} into pairs of subsets. There are two M_{24} -orbits on $\mathcal{C}_{11} \setminus \{0\}$. One of the orbits consists of the partitions involving octads and other one the partitions into pairs of complementary dodecads. Acting on $\mathcal{C}_{11}^* \setminus \{0\}$, the group M_{24} also has two orbits, this time indexed by the pairs and the sextets

$$|\mathcal{C}_{11}| = 1 + 759 + 1288; \quad |\mathcal{C}_{11}^*| = 1 + 276 + 1771.$$

Already from this numerology it follows that both C_{11} and C_{11}^* are irreducible and not isomorphic to each other. The modules C_{11} and C_{11}^* are known as the *irreducible Golay code and Todd modules* of M_{24} , respectively.

Since C_{12} is totally singular and $V^{(1)}$ is the radical of *b*, the bilinear form *b* establishes a duality between C_{12} and C_{12}^* and also between C_{11} and C_{11}^* . Since M_{24} does not stabilize non-zero vectors in C_{12}^* , the latter is indecomposable. Because of the dually, C_{12} is also indecomposable.

5

M₂₄ and all that

Lemma 1.2.1 The series

$$0 < V^{(1)} < \mathcal{C}_{12} < V^{(23)} < V_{24}$$

is the only composition series of V_{24} considered as the module for M_{24} .

Proof. We have seen that the above series is indeed a composition series. Since both C_{12} and C_{12}^* are indecomposable, in order to prove the uniqueness it is sufficient to show that $V_{24}/V^{(1)}$ does not contain C_{11}^* as a submodule. Such a submodule would contain an M_{24} -orbit X indexed by the pairs from \mathcal{P} . On the other hand, by the 5-fold transitivity of M_{24} on \mathcal{P} , the stabilizer of a pair stabilizes only one proper partition of \mathcal{P} (which is the partition into the pair and its complement). Therefore, X has no choice but to consist of all such partitions. But then X would generate the whole of $V^{(23)}/V^{(1)}$, which proves that X does not exist.

If *K* is a group and *U* is a GF(2)-module for *K*, then $H^1(K, U)$ and $H^2(K, U)$ denote the first and the second cohomology groups of *U*. Each of these groups carries a structure of a GF(2)-module, in particular it is elementary abelian. The order of $H^1(K, U)$ is equal to the number of classes of complements to *U* in the semidirect product U : K of *U* and *K* (with respect to the natural action), while the elements of $H^2(K, U)$ are indexed by the isomorphism types of extensions of *U* by *K* with the identity element corresponding to the split extension U : K. If *W* is the largest indecomposable extension of *U* by a trivial module, then $W/U \cong H^1(K, U)$ and all the complements to *W* in the semidirect product W : K are conjugate and $H^1(K, W)$ is trivial. Dually, if *V* is the largest indecomposable extension of a trivial module V_0 by *U*, then $V_0^* \cong H^1(K, U^*)$ (here U^* is the dual module of *U*)

Lemma 1.2.2 The following assertions hold:

- (i) $H^1(M_{24}, C_{11})$ is trivial;
- (ii) $H^2(M_{24}, C_{11})$ is trivial;
- (iii) $H^1(M_{24}, C^*_{11})$ has order 2;
- (iv) $H^2(M_{24}, C_{11}^*)$ has order 2.

Proof. The first cohomologies were computed in Section 9 in [Gri74]. The second cohomologies calculations are commonly attributied to D.J. Jackson [Jack80] (compare [Th79a]). All the assertions were rechecked by Derek Holt using his computer package for cohomology calculating.

In view of the paragraph before the lemma, by (ii) every extension of C_{11} by M_{24} splits; by (i) all the M_{24} -subgroups in the split extension C_{11} : M_{24} are conjugate; by (iv) there exists a unique non-split extension (denoted by

1.2 Todd module

 $C_{11}^* \cdot M_{24}$), while by (iii) the split extension $C_{11}^* : M_{24}$ contains two classes of complements (these classes are fused in $C_{12}^* : M_{24}$). Furthermore, every extension by C_{11}^* of a trivial module is semisimple (which means decomposable), while C_{12} is the largest indecomposable extension by C_{11} of a trivial module.

The following result has been recently established by Derek Holt using computer calculations and in a sense it assures success of our construction of the Monster amalgam.

Lemma 1.2.3 *The following assertions hold (where* \otimes *and* \wedge *denote the tensor and exterior products of modules):*

(i) H¹(M₂₄, C^{*}₁₁ ⊗ C^{*}₁₁) has order 2;
(ii) H¹(M₂₄, C^{*}₁₁ ∧ C^{*}₁₁) has order 2.

The following assertion is a rather standard consequence of the above statement but a sketch of a proof might be helpful.

Corollary 1.2.4 The following hold:

- (i) there exists a unique indecomposable extension of C_{11}^* by C_{11} ;
- (ii) the extension in (i) carries a non-singular invariant quadratic form of plus type.

Proof. To prove (i) we need to enumerate (up to the obvious equivalence) the pairs (V, M) where $M \cong M_{24}$ and V is an M-module having C_{11}^* as a submodule and C_{11} as the corresponding factor module. We should keep in mind that exactly one such pair corresponds to the decomposable extension (where $V = C_{11}^* \oplus C_{11}$). We start with a 22-dimensional GF(2)-space V and enumerate the suitable subgroups M in the general linear group $G = GL(V) \cong GL_{22}(2)$. Let U_1 and U_2 be a pair of disjoint 11-dimensional subspaces in V. Then $N_G(U_1)$ is a semidirect product of

$$C = C_G(U_1) \cap C_G(V/U_1) \cong U_1 \otimes U_2^*$$

and

$$K = N_G(U_1) \cap N_G(U_2) \cong GL(U_1) \times GL(U_2).$$

Let M_0 be a subgroup of K isomorphic to M_{24} which acts on U_1 as on C_{11}^* and on U_2 as on C_{11} . It is easy to see that up to conjugation in K such subgroup M_0 can be chosen uniquely. Then (V, M_0) is the pair corresponding to the decomposable extension and any other M which suits the requirements is a complement to C in CM_0 . Since $C \cong C_{11}^* \otimes C_{11}^*$ (as an M_0 -module), (1.2.3 (i)) shows that there is exactly one further complement M_1 . The action of M_1 on V is indecomposable.

M₂₄ and all that

To establish (ii) we enumerate the triples (V, M, q) where V and M are as above and q is an M-invariant non-singular quadratic form on V. In this case we start with an orthogonal space (V, q) and enumerate the suitable subgroups M in the orthogonal group H = O(V, q). Since C_{11}^* is irreducible and since it is not self-dual, the submodule in V isomorphic to C_{11}^* must be totally isotropic. Therefore, we choose U_1 and U_2 as in (i) and assume that each of them is totally isotropic with respect to q. Then $N_H(U_1)$ is a semidirect product of

$$D = C_H(U_1) \cong U_1 \wedge U_1$$

and

$$L = N_H(U_1) \cap N_H(U_2) \cong GL(U_1).$$

Take M_0 to be the subgroup in L isomorphic to M_{24} which acts on U_1 as on C_{11}^* (since the bilinear form associated with q establishes a duality between U_1 and U_2 , M_0 acts on U_2 as on C_{11}). By (1.2.3 (ii)) up to conjugation, $DL \cong (C_{11}^* \wedge C_{11}^*) : M_0$ contains, besides M_0 , exactly one further complement which must be M_1 . By (i) the pair (V, M_1) corresponds to the unique indecomposable extension.

In the next section the indecomposable extension of C_{11}^* by C_{11} will be constructed explicitly along with the invariant quadratic form on it.

Let *U* be a *GF*(2)-module for *K* and let *U* : *K* denote the semidirect product of *U* and *K* with respect to the natural action. Then (since *U* is abelian) all the complements to *U* in *U* : *K* are conjugate in the automorphism group of U : K. Therefore, $H^1(K, U)$ 'contributes' to the outer automorphism group of *U* : *K*. In fact this contribution takes place for any extension of *U* by *K*. In order to explain this phenomenon (which is probably well-known), we recall the notion of *partial semidirect product* (cf. p.27 in [G68]).

Let X, Y, Z be groups, let

$$\varphi_X : Z \to X,$$
$$\varphi_Y : Z \to Y$$

be monomorphisms whose images are normal in X and Y, respectively, and let

$$\alpha: X \to \operatorname{Aut}(Y)$$

be a homomorphism such that for every $x \in X$ and $z \in Z$ the following equality holds

$$\varphi_X^{-1}(x^{-1}\varphi_X(z)x) = \varphi_Y^{-1}(\varphi_Y(z)^{\alpha(x)})$$

1.2 Todd module

(notice that the equality implies that $\alpha(X)$ normalizes $\varphi_Y(Z)$). The usual semidirect product S = Y : X of Y and X associated with the homomorphism α is the set

$$S = \{ (x, y) \mid x \in X, y \in Y \}$$

together with the multiplication rule

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2, y_1^{\alpha(x_2)} y_2).$$

The *partial semidirect product* of *Y* and *X* over *Z* is the quotient of S/Z_S where

$$S_Z = \{(\varphi_X(z), \varphi_Y(z^{-1})) \mid z \in Z\}$$

is a 'diagonal' subgroup of S isomorphic to Z.

Lemma 1.2.5 Let U be a GF(2)-module for a group K and let E be an extension (split or non-split) of U by K. Then there is an injective homomorphism of $H^1(K, U)$ into Out(E).

Proof. Let *W* be the largest indecomposable extension of *U* by a trivial module, so that $W/U \cong H^1(K, U)$ and let *P* be the partial semidirect product of *W* and *E* over *U* with respect to the homomorphism $\alpha : E \to GL(W)$ such that *U* acts trivially and $E/U \cong K$ acts naturally. Then *E* is (isomorphic to) a self-centralizing normal subgroup in *P* (so that $P/E \leq Out(E)$) and $P/E \cong W/U \cong H^1(K, U)$, which gives the result.

The partial semidirect product of $C_{11}^* \cdot M_{24}$ and C_{12}^* over C_{11}^* is a non-split extension of C_{12}^* by M_{24} and we denote the extension by $C_{12}^* \cdot M_{24}$. The following result is not difficult to deduce from the data on M_{24} and its modules we have revealed already.

Lemma 1.2.6 The following assertions hold:

(i) $C_{12}^* \cdot M_{24} = \operatorname{Aut}(C_{11}^* \cdot M_{24});$

- (ii) $C_{12}^* \cdot M_{24}$ is the only non-split extension of C_{12}^* by M_{24} ;
- (iii) the Schur multiplier of $C_{11}^* \cdot M_{24}$ is trivial.

We will make use of the following result of a combinatorial nature:

Lemma 1.2.7 Let X be a subgroup of the general linear group $GL(C_{11})$ containing M_{24} and having on the element set of C_{11} the same orbits as M_{24} does (with lengths 1, 759, and 1288). Then $X = M_{24}$.

Proof. The semidirect product C_{11} : *X* acting on the cosets of *X* is an affine rank three permutation group. All such groups were classified in [Lie87]

 \square

M₂₄ and all that

and the assertion can be deduced as a consequence of that classification (of course the assertion can be proved independently as a pleasant combinatorial exercise). \Box

1.3 Anti-heart module

The *intersection map* $C_{12} \times C_{12} \rightarrow C_{12}^*$, defined by

 $(u, v) \mapsto (u \cap v)^*$

is bilinear. Since any two Golay sets intersect evenly the image of the intersection map is C_{11}^* . The intersection map (considered as a cocycle) determines an extension W_{24} of C_{12}^* by C_{12}

$$W_{24} = \{(u, v^*) \mid u \in \mathcal{C}_{12}, v^* \in \mathcal{C}_{12}^*\}$$

with

$$(u_1, v_1^*) + (u_2, v_2^*) = (u_1 + u_2, v_1^* + v_2^* + (u_1 \cap u_2)^*).$$

By (1.2.1), the permutation module V_{24} is an indecomposable extension of C_{12} by C_{12}^* . We call W_{24} the *anti-permutation* module. As the next lemma shows, the anti-permutation module is also indecomposable.

Lemma 1.3.1 Let W_{24} be the above-defined anti-permutation module of M_{24} . Put

$$W^{(1)} = \{(u, 0) \mid u \in V^{(1)}\},\$$
$$W^{(23)} = \{(u, v^*) \mid u \in \mathcal{C}_{12}, v^* \in \mathcal{C}_{11}^*\},\$$
$$\mathcal{S}_{12}^* = \{(0, v^*) \mid v^* \in \mathcal{C}_{12}^*\},\$$
$$\mathcal{S}_{12} = \{(u, 0) \mid u \in \mathcal{C}_{12}\},\$$

The following assertions hold:

- (i) W⁽¹⁾ and W⁽²³⁾ are the only submodules in W₂₄ of dimension and co-dimension 1, respectively;
- (ii) S_{12}^* is a submodule in W_{24} isomorphic to C_{12}^* ;
- (iii) $\mathcal{S}_{11}^* := \mathcal{S}_{12}^* \cap W^{(23)}$ is a submodule isomorphic to \mathcal{C}_{11}^* ;
- (iv) S_{12} is M_{24} -invariant; it maps bijectively onto $W_{24}/S_{12}^* \cong C_{12}$, although S_{12} is not closed under the addition in W_{24} ;
- (v) $W^{(23)}/W^{(1)}$ is an indecomposable extension of C_{11}^* by C_{11} .

Proof. Since C_{12} and C_{12}^* are indecomposable containing one trivial composition factor each, (i) follows. Now (ii), (iii), and (iv) are easy to check using