
CLASSICAL MEASUREMENTS IN CURVED
SPACE-TIMES

The theory of relativity describes the laws of physics in a given space-time.
However, a physical theory must provide observational predictions expressed in
terms of measurements, which are the outcome of practical experiments and
observations.

Ideal for researchers with a mathematical background and a basic knowledge
of relativity, this book will help in the understanding of the physics behind the
mathematical formalism of the theory of relativity. It explores the informative
power of the theory of relativity, and shows how it can be used in space physics,
astrophysics, and cosmology. Readers are given the tools to pick out from the
mathematical formalism the quantities which have physical meaning, which can
therefore be the result of a measurement. The book considers the complications
that arise through the interpretation of a measurement which is dependent on
the observer who performs it. Specific examples of this are given to highlight the
awkwardness of the problem.
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Preface

A physical measurement is meaningful only if one identifies in a non-ambiguous
way who is the observer and what is being observed. The same observable can be
the target of more than one observer so we need a suitable algorithm to compare
their measurements. This is the task of the theory of measurement which we
develop here in the framework of general relativity.

Before tackling the formal aspects of the theory, we shall define what we mean
by observer and measurement and illustrate in more detail the concept which
most affected, at the beginning of the twentieth century, our common way of
thinking, namely the relativity of time.

We then continue on our task with a review of the entire mathematical machin-
ery of the theory of relativity. Indeed, the richness and complexity of that machin-
ery are essential to define a measurement consistently with the geometrical and
physical environment of the system under consideration.

Most of the material contained in this book is spread throughout the litera-
ture and the topic is so vast that we had to consider only a minor part of it,
concentrating on the general method rather than single applications. These have
been extensively analyzed in Clifford Will’s book (Will, 1981), which remains an
essential milestone in the field of experimental gravity. Nevertheless we apologize
for all the references that would have been pertinent but were overlooked.

We acknowledge financial support by the Istituto Nazionale di Fisica Nucle-
are, the International Center for Relativistic Astrophysics Network, the Gruppo
Nazionale per la Fisica Matematica of Istituto Nazionale di Alta Matematica,
and the Ministero della Pubblica Istruzione of Italy.

Thanks are due to Christian Cherubini, Andrea Geralico, Giovanni Preti, and
Oldrich Semerák for helpful discussions. Particular thanks go to Robert Jantzen
for promoting interest in this field. All the blame for any inconsistencies and
errors contained in the book should be addressed to us only.

Fernando de Felice
Physics Department, University of Padova, Italy

Donato Bini
Istituto per le Applicazioni del Calcolo “M. Picone,”

CNR, Rome, Italy

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-88930-8 - Classical Measurements in Curved Space-Times
Fernando de Felice and Donato Bini
Frontmatter
More information

http://www.cambridge.org/9780521889308
http://www.cambridge.org
http://www.cambridge.org


Notation

�: The real line.

�4: The space of the quadruplets of real numbers.

{xα}|α=0,1,2,3: A quadruplet of local coordinates.

{eα}: A field of bases (frames) for the tangent space.

{ωα}: A field of dual bases (dual frames) ωα(eβ) = δα
β .

g = gαβωα ⊗ ωβ : The metric tensor.

g−1: Inverse metric.

g: Determinant of the metric.

X#: A tangent vector field (with contravariant components).

X�: The 1-form (with covariant components) g-isomorphic to X.

(left contraction): Contraction of the rightmost contravariant index of the
first tensor with the leftmost covariant index of the second tensor, that is
[S T ]······ = S···αTα···.

(right contraction): Contraction of the rightmost covariant index of the first
tensor with the leftmost contravariant index of the second tensor, that is
[S T ]······ = S···αTα···.

p (left p-contraction): Contraction of the rightmost p contravariant indices of
the first tensor with the leftmost p covariant indices of the second tensor, i.e.
S p T ≡ Sα...β1...βpTβ1...βp....

p (right p-contraction): Contraction of the rightmost p covariant indices of the
first tensor with the leftmost p contravariant indices of the second tensor, i.e.
S p T ≡ Sα...

β1...βp
T β1...βp....(

r
s

)
-tensor: A tensor r-times contravariant and s-times covariant.

[α1 . . . αp]: Antisymmetrization of the p indices.

(α1 . . . αp): Symmetrization of the p indices.
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Notation xiii

[ALT S]α1...αp
= S[α1...αp].

[SYM S]α1...αp
= S(α1...αp).

eγ(·): γ-component of a frame derivative.

∇: Covariant derivative.

∇eα
: α-component of the covariant derivative relative to the frame {eσ}.

εα1...α4 = ε[α1...α4]: Levi-Civita alternating symbol.

ηα1...α4 = g1/2εα1...α4 ; ηα1...α4 = −g−1/2εα1...α4 : The unit volume 4-form.

δα1...α4
β1...β4

= εα1...α4εβ1...β4 = −ηα1...α4ηβ1...β4 : Generalized Kronecker delta.

[∗S]αp+1...α4 = 1
p! Sα1...αp

ηα1...αp
αp+1...α4 : Hodge dual of Sα1...αp

.

“·”: Scalar g-product, i.e. u ·v = g(u, v) = gαβuαvβ for any pair of vectors (u, v).

∧: The exterior or wedge product, i.e. u ∧ v = u ⊗ v − v ⊗ u for any pair (u, v)
of vectors or 1-forms.

{eα̂}: An orthonormal frame (tetrad).

D
ds : Absolute derivative along a curve γ with parameter s, i.e. D/ds = ∇γ̇ .

a(u): Acceleration vector of the world line with tangent vector field u,
i.e. a(u) = ∇uu.

D(fw,u)

ds : The Fermi-Walker derivative along the curve with parameter s. For any
vector field X: D(fw,u) X

ds = DX
ds ± [a(u)(u · X) − u(a(u) · X)].

CX : The congruence of curves with tangent field X.

ω(X): The vorticity tensor of the congruence CX (the same symbol also denotes
the vorticity vector).

θ(X): The expansion tensor of the congruence CX .

Θ(X) = Tr θ(X): The trace of the expansion tensor of the congruence CX .

£X : Lie derivative along the congruence CX .

Cγ
αβ : Structure functions of a given frame.

ωα1...αp = p!ω[α1 ⊗ · · · ⊗ ωαp]: The dual basis tensor of a space of p-forms.

δT = ∗d[∗T ]: Divergence of a p-form T .

∆(dR) = δd + dδ: de Rham operator.

LRSu: Local rest space of u.

P (u): u-spatial projector operator which generates LRSu.
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xiv Notation

T (u): u-temporal projector operator which generates the time axis of u.

[P (u)S] ≡ S(u): Total u-spatial projection of a tensor S such that

[S(u)]α1...
β1... = P (u)α1

σ1 · · ·P (u)ρ1
β1 · · ·Sσ1...

ρ1....

[£(u)X ]: u-spatially projected Lie derivative. For any tensor T it is

[£(u)XT ]α...
β... = P (u)α

σ · · ·P (u)ρ
β · · · [£XT ]σ . . . ρ....

∇(u)lie = £(u)u: u-spatial Lie temporal derivative.

∇(u) = P (u)∇: u-spatially projected covariant derivative.

P (u)D(fw,X)

ds : u-spatially projected Fermi-Walker derivative along a curve with
unit tangent vector X.

d(u) = P (u)d: u-spatially projected exterior derivative.

“·u”: u-spatial inner product, i.e. X ·u Y = P (u)αβXαY β .

“×u” : u-spatial cross product, i.e. [X ×u Y ]α = η(u)α
ρσXρY σ.

η(u)α
ρσ = uβηβα

ρσ: u-spatial 4-volume.

gradu = ∇(u): u-spatial gradient.

curlu = ∇(u)×u: u-spatial curl.

divu = ∇(u)·u: u-spatial divergence.

Scurlu: Symmetrized curlu, i.e. [Scurlu A]αβ = η(u)γδ(α∇(u)γAβ)
δ.

C(fw)ab: Fermi-Walker rotation coefficients, i.e. C(fw)ab = eb · ∇uea.

C(lie)
b
a: Lie rotation coefficients, i.e. C(lie)

b
a = ωb(£(u)uea).

∇(u)(fw) = P (u)∇u: u-spatial Fermi-Walker temporal derivative.

∇(u)(tem). ≡ ∇(u)(fw) or ∇(u)(lie)

ν(U, u): Relative spatial velocity of U with respect to u.

ν(u,U): Relative spatial velocity of u with respect to U .

γ(U, u) = γ(u,U) = γ: Lorentz factor of the two observers u and U .

ν̂(u,U): Unitary relative velocity vector of u with respect to U .

ζ: Angular velocity.

ω(k, u): Frequency of the light ray k with respect to the observer u.

||ν(U, u)|| = ||ν(u,U)|| = ν: Magnitude of the relative velocity of the two
observers u and U .
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Notation xv

B(U, u): Relative boost from u to U .

P (U, u) = P (U)P (u): Mixed projector operator from LRSu into LRSU .

B(lrs)(U, u) = P (U)B(U, u)P (u): Boost from LRSu into LRSU .

B(lrs)(U, u)−1 = B(lrs)(u,U): Inverse boost from LRSU to LRSu.

B(lrs)u
(U, u) = P (U, u)−1 B(lrs)(U, u).

D(lie,U)X

dτU
= [U, X]: Lie derivative of X along CU .

τ(U, u): Relative standard time parameter, i.e. dτ(U, u) = γ(U, u)dτU .

�(U, u): Relative standard length parameter, i.e. d�(U, u) = γ(U, u)||ν(U, u)||dτU .

D(fw,U,u)

dτ(U, u)
= P (u) D

dτ(U, u)
: Projected absolute covariant derivative along U .

a(fw,U,u) = P (u)Dν(U,u)
dτ(U,u)

: Relative acceleration of U with respect to u.

(∇X)αβ ≡ ∇βXα.

Physical dimensions

We are using geometrized units with G = 1 = c, G and c being Newton’s gravi-
tational constant and the speed of light in vacuum, respectively. Symbols are as
they appear in the text; the reader is advised that more than one symbol may
be used for the same item and conversely the same symbol may refer to different
items. Reference is made to the observers (U, u).

Time t → [L]1

Space r, x, y, z → [L]1

Mass M,m, µ0 → [L]1

Angular velocity ζ → [L]−1

Energy E → [L]1

Specific energy
(in units of mc2) E, γ → [L]0

Specific angular momentum
(in units of mc) L, λ,Λ, � → [L]1

of a rotating source (Kerr) a → [L]1

Spin S → [L]2

Specific spin S/m → [L]1

4-velocity U, u → [L]0

Relative velocity ν(U, u) → [L]0

Force F → [L]0

Acceleration a(U) → [L]−1

Expansion Θ(U) → [L]−1
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xvi Notation

Vorticity (ω(U)αβ ω(U)αβ)1/2 → [L]−1

Electric charge Q, e → [L]1

Space-time curvature (RαβγδRαβγδ)1/2 → [L]−2

Electric field E(U) → [L]−1

Magnetic field B(U) → [L]−1

Frequency ω(k, u) → [L]−1

Gravitational wave amplitude h+,× → [L]0

Strain S(U) → [L]−2 .

Conversion factors

We list here conversion factors from conventional CGS to geometrized units. For
convenience we denote the quantities in CGS units with a tilde (∼).

Name CGS units Geometrized units

Mass M̃ M = GM̃
c2

Electric charge Q̃ Q = Q̃
√

G
4πε0c4

Velocity ṽ ν = ṽ
c

Acceleration ã a = ã
c2

Force F̃ F = GF̃
c4

Electric field Ẽ E = Ẽ
√

4πε0G
c4

Magnetic field H̃ H = H̃
√

4πε0G
c2

Energy Ẽ E = GẼ
c4

Specific energy Ẽ
M̃c2

E
M ≡ γ = Ẽ

M̃c2

Angular momentum L̃ L = GL̃
c3

Angular momentum in units of M̃c L̃

M̃c
λ = L

M = L̃

M̃c
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