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Introduction

A physical measurement requires a collection of devices such as a clock, a
theodolite, a counter, a light gun, and so on. The operational control of this
instrumentation is exercised by the observer, who decides what to measure, how
to perform a measurement, and how to interpret the results. The observer’s labo-
ratory covers a finite spatial volume and the measurements last for a finite interval
of time so we can define as the measurement’s domain the space-time region in
which a process of measurement takes place. If the background curvature can be
neglected, then the measurements will not suffer from curvature effects and will
then be termed local. On the contrary, if the curvature is strong enough that it
cannot be neglected over the measurement’s domain, the response of the instru-
ments will depend on the position therein and therefore they require a careful
calibration to correct for curvature perturbations. In this case the measurements
carrying a signature of the curvature will be termed non-local.

1.1 Observers and physical measurements
A laboratory is mathematically modeled by a family of non-intersecting time-like
curves having u as tangent vector field and denoted by Cu; this family is also
termed the congruence. Each curve of the congruence represents the history of
a point in the laboratory. We choose the parameter τ on the curves of Cu so
as to make the tangent vector field u unitary; this choice is always possible for
non-null curves. Let Σ be a space-like three-dimensional section of Cu spanned
by the curves which cross a selected curve γ∗ of the congruence orthogonally. The
concepts of unitarity and orthogonality are relative to the assumed background
metric. The curve γ∗ will be termed the fiducial curve of the congruence and
referred to as the world line of the observer. Let the point of intersection of Σ
with γ∗ be γ∗(τ); as τ varies continuously over γ∗, the section Σ spans a four-
dimensional volume which represents the space-time history of the observer’s
laboratory. Whenever we limit the extension of Σ to a range much smaller than
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2 Introduction

the average radius of its induced curvature, we can identify Cu with the single
curve γ∗ and Σ with the point γ∗(τ). Any time-like curve γ with tangent vector
u can then be identified as the world line of an observer, which will be referred to
as “the observer u.” If the parameter τ on γ is such as to make the tangent vector
unitary, then its physical meaning is that of the proper time of the observer u,
i.e. the time read on his clock in units of the speed of light in vacuum.

This concept of observer, however, needs to be specialized further, defining a
reference frame adapted to him. A reference frame is defined by a clock which
marks the time as a parameter on γ, as already noted, and by a spatial frame
made of three space-like directions identified at each point on γ by space-like
curves stemming orthogonally from it. While the time direction is uniquely fixed
by the vector field u, the spatial directions are defined up to spatial rotations,
i.e. transformations which do not change u; obviously there are infinitely many
such spatial perspectives.

The result of a physical measurement is mathematically described by a scalar,
a quantity which is invariant under general coordinate transformations. A scalar
quantity, however, is not necessarily a physical measurement. The latter, in fact,
needs to be defined with respect to an observer and in particular to one of the
infinitely many spatial frames adapted to him. The aim of the relativistic theory
of measurement is to enable one to devise, out of the tensorial representation of
a physical system and with respect to a given frame, those scalars which describe
specific properties of the system.

The measurements are in general observer-dependent so, as stated, a criterion
should also be given for comparing measurements made by different observers.
A basic role in this procedure of comparison is played by the Lorentz group of
transformations. A measurement which is observer-independent is termed Lorentz
invariant. Lorentz invariant measurements are of key importance in physics.

1.2 Interpretation of physical measurements
The description of a physical system depends both on the observer and on the
chosen frame of reference. In most cases the result of a measurement is affected
by contributions from the background curvature and from the peculiarity of the
reference frame. As long as it is not possible to discriminate among them, a
measurement remains plagued by an intrinsic ambiguity. We shall present a few
examples where this situation arises and discuss possible ways out. The most
important among the observer-dependent measurements is that of time intervals.
Basic to Einstein’s theory of relativity is the relativity of time. Hence we shall
illustrate this concept first, dealing with inertial frames for the sake of clarity.

1.3 Clock synchronization and relativity of time
The theory of special relativity, formally issued in 1905 (Einstein, 1905), presup-
poses that inertial observers are fully equivalent in describing physical laws. This
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1.3 Clock synchronization and relativity of time 3

requirement, known as the principle of relativity, implies that one has to aban-
don the concepts of absolute space and absolute time. This step is essential in
order to envisage a model of reality which is consistent with observations and in
particular with the behavior of light. As is well known, the speed of light c, whose
value in vacuum is 2.997 924 58× 105 km s−1, is independent of the observer who
measures it, and therefore is an absolute quantity.

Since time plays the role of a coordinate with the same prerogatives as the
spatial ones, one needs a criterion for assigning a value of that coordinate, let
us say t, to each space-time point. The criterion of time labeling, also termed
clock synchronization, should be the same in all frames if we want the principle
of relativity to make sense, and this is assured by the universality of the velocity
of light. In fact, one uses a light ray stemming from a fiducial point with spatial
coordinates x0, for example, and time coordinate equal to zero, then assigns
to each point of spatial coordinates x0 + ∆x crossed by the light ray the time
t = ∆x/c. In this way, assuming the connectivity of space-time, we can label each
of its points with a value of t. Clearly one must be able to fix for each of them
the spatial separation ∆x from the given fiducial point, but that is a non-trivial
procedure which will be discussed later in the book.

The relativity of time is usually stated by saying that if an observer u compares
the time t read on his own clock with that read on the clock of an observer u′

moving uniformly with respect to u and instantaneously coincident with it, then
u finds that t′ differs from t by some factor K, as t′ = Kt.1 On the other hand,
if the comparison is made by the observer u′, because of the equivalence of the
inertial observers he will find that the time t marked by the clock of u differs
from the time t′ read on his own clock when they instantaneously coincide, by
the same factor, as t = Kt′. The factor K, which we denote as the relativity
factor, is at this stage unknown except for the obvious facts that it should be
positive, it should depend only on the magnitude of the relative velocity for
consistency with the principle of relativity, and finally that it should reduce to
one when the relative velocity is equal to zero. Our aim is to find the factor K

and explain why it differs in general from one. A similar analysis can be found
in Bondi’s K-calculus (Bondi, 1980; see also de Felice, 2006). In what follows we
shall not require knowledge of the Lorentz transformations nor of any concept of
relativity.

Let us consider an inertial frame S with coordinates (x, y, z) and time t. The
time axes in S form a congruence of curves each representing the history of
a static observer at the corresponding spatial point. Denote by u the fiducial
observer of this family, located at the spatial origin of S. At each point of S there
exists a clock which marks the time t of that particular event and which would
be read by the static observer spatially fixed at that point. All static observers

1 The choice of a linear relation is justified a posteriori since it leads to the correct theory of
relativity.
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4 Introduction

in S are equivalent to each other since we require that their time runs with
the same rate. A clock which is attached to each point of S will be termed an
S-clock.

Let S′ be another inertial frame with spatial coordinates (x′, y′, z′) and time t′.
We require that S′ moves uniformly along the x-axis of S with velocity ν. The
x-axis of S will be considered spatially coincident with the x′-axis of S′, with the
further requirement that the origins of x and x′ coincide at the time t = t′ = 0.
In this case the relative motion is that of a recession. In the frame S′ the totality
of time axes forms a congruence of curves each representing the history of a static
observer. At each point of S′ there is a clock, termed an S′-clock, which marks
the time of that particular event and is read by the static observer fixed at the
corresponding spatial position. The S′-clocks mark the time t′ with the same
rate; hence the static observers in S′ are equivalent to each other. Finally we
denote by u′ the fiducial observer of the above congruence of time axes, fixed at
the spatial origin of S′.

Let the systems S and S′ be represented by the 2-planes (ct, x) and (ct′, x′)
respectively;2 we then assume that from the spatial origin of S and at time
tu, a light signal is emitted along the x-axis and towards the observer u′. The
light signal reaches the observer u′ at the time marked by the local S-clock,
given by

tu′ =
tu

1 − ν/c
. (1.1)

At this event, the observer u′ can read two clocks which are momentarily coinci-
dent, namely the S-clock which marks the time tu′ as in (1.1) and his own clock
which marks a time t′u′ . In general the time beating on a given clock is driven
by a sequence of events; in our case the time read on the clock of the observer
u, at the spatial origin of S, follows the emission of the light signals. If these are
emitted with continuity3 then the time marked by the clock of the observer u

will be a continuous function on S which we still denote by tu. The time read
on the S-clocks which are crossed by the observer u′ along his path marks the
instants of recording by u′ of the light signals emitted by u. The events of recep-
tion by u′, however, do not belong to the history of one observer only, but each
of them, having a different spatial position in S, belongs to the history of the
static observer located at the corresponding spatial point.

Let us now consider the same process as seen in the frame S′. The space-time of
S′ is carpeted by S′-clocks each marking the time t′ read by the static observers
fixed at each spatial point of S′. The observer u′, at the spatial origin of S′,
receives at time t′u′ the light signal emitted by the observer u who is seen receding
along the negative direction of the x′-axis. The emission of the light signals by

2 This is possible without loss of generality because of the homogeneity and isotropy of space.
3 By continuity here we mean that the time interval between any two events of emission (or

of reception) goes to zero.
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1.3 Clock synchronization and relativity of time 5

the observer u occurs at times t′u read on the S′-clocks crossed by u along his
path and given by

t′u =
t′u′

1 + ν/c
. (1.2)

The time on the clock of the observer u′, denoted by t′u′ , runs continuously with
the recording of the light signals emitted by u. Meanwhile the observer u can
read two clocks, momentarily coincident, namely his own clock which marks a
time tu and the S′-clock which is crossed by u during his motion which marks a
time t′u. Also in this case we have to remember that t′u is not the time read
on the clock of one single observer but is the time read at each instant on
an S′-clock belonging to the static observer fixed at the corresponding spatial
position in S′.

To summarize, the time read on the S-clocks set along the path of u′ in S is tu′

while the time marked by the clock carried by u′ is t′u′ . Analogously the time read
on the S′-clocks set along the path of u in S′ is t′u while the time read by u on
his own clock is given by tu. Our aim is to find the relation between t′u′ and tu′

in the frame S and that between tu and t′u in the frame S′. In both cases we are
comparing times read on clocks which are in relative motion but instantaneously
coincident.

The observers u and u′ located at the spatial origins of S and S′ respectively
cannot read each other’s clocks because they will be far apart after the initial
time t = t′ = 0 when they are assumed to coincide. In order to find the relation
between tu and t′u′ one has to go through the intermediate steps where

(i) the observer u at the spatial origin of S correlates the time tu, read on his
own clock at the emission of the light signals, to the time tu′ , marked by
the S-clocks when they are reached by the light signals and simultaneously
crossed by the observer u′ along his path in S;

(ii) the observer u′ at the spatial origin of S′ correlates the time t′u′ , read on his
own clock, to the time t′u marked by the S′-clocks when a light signal was
emitted and simultaneously crossed by u along his path in S′.

The two points of view are not symmetric; in fact, the light signals are emitted by
u and received by u′ in both cases. These intermediate steps allow us to establish
the relativity of time.

The principle of relativity ensures the complete equivalence of the inertial
observers in the sense that they will always draw the same conclusions from
an equal set of observations. In our case, comparing the points of view of the two
observers, we deduce that the ratio between the time tu′ that u′ reads on each
S-clock when he crosses it, and the time t′u′ that he reads on his own clock at
the same instant, is the same as the ratio between the time t′u that u reads on
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6 Introduction

each S′-clock which he crosses during his motion in S′, and the time tu that he
reads on his own clock at the same instant, namely:

tu′

t′u′
=

t′u
tu

. (1.3)

Taking into account (1.1), relation (1.3) becomes

t′u′ = tu′
tu
t′u

=
t2u′

t′u

(
1 − ν

c

)
. (1.4)

Then, from (1.2),

t′u′ =
t2u′

t′u′

(
1 − ν2

c2

)
. (1.5)

Along the path of u′ in S, we have

t′u′ =

√
1 − ν2

c2
tu′ . (1.6)

Similarly, from (1.3) and (1.2) we have

tu = t′u′
t′u
tu′

=
t′2u
tu′

(
1 +

ν

c

)
. (1.7)

Hence, from (1.1),

tu =
t′2u
tu

(
1 − ν2

c2

)
. (1.8)

Along the path of u in S′ we finally have

tu =

√
1 − ν2

c2
t′u. (1.9)

Thus the factor K turns out to be equal to
√

1 − (ν/c)2.
The above considerations have been made under the assumption that the

observers u and u′ are receding from each other. However the above result should
still hold if the observers u and u′ are approaching instead. We shall prove that
this is actually the case.

Indeed the time rates of their clocks depend on the sense of the relative motion.
In fact, if the two observers move away from each other the light signals emitted
by one of them will be seen by the other with a delay, hence at a slower rate,
because each signal has to cover a longer path than the previous one. If the
observers instead approach each other then the signal emitted by one will be
seen by the other with an anticipation due to the relative approaching motion,
and so at a faster rate. This is what actually occurs to the time rates of the
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1.3 Clock synchronization and relativity of time 7

clocks carried by the observers u and u′, namely tu and t′u′ . In fact, from (1.6)
and (1.1) we deduce, from the point of view of the observer u, that

t′u′ =

√
1 + ν/c

1 − ν/c
tu. (1.10)

Hence, if ν > 0 (u′ recedes from u) then t′u′ > tu, i.e. u judges the clock of u′ to
be ticking at a slower rate with respect to his own; if ν < 0 (u′ approaching u)
then t′u′ < tu, that is u now judges the clock of u′ to be ticking at a faster rate
with respect to his own. Despite this, the difference marked by the clocks of the
two frames when they are instantaneously coincident must be independent of the
sense of the relative motion. This will be shown in what follows.

Let us consider two frames S and S′ approaching each other with velocity ν

along the respective coordinate axes x and x′. Let u be the observer at rest at
the spatial origin of S and u′ the one at rest at the spatial origin of S′. From the
point of view of S, the observer u′ approaches u along a straight line of equation:

x = −νt + x0 (1.11)

where x0 is the spatial position of u′ at the initial time t = 0. The observer u

emits light signals along the x-axis at times tu. These signals move towards the
observer u′ and meet him at the events of observation at times tu′ read by u′ on
the S-clocks that he crosses along his path. The equation of motion of the light
signals will be in general

x = c(t − tu) (1.12)

and so the instant of observation by u′ is given by the intersection of the line
(1.12), which describes the motion of the light ray, and the line (1.11) which
describes that of the observer u′, namely

c (tu′ − tu) = −νtu′ + x0 (1.13)

which leads to

tu′ =
tu + x0/c

1 + ν/c
. (1.14)

Let us stress what was said before: while times tu are read on the clock of u

at rest in the spatial origin of S, the instants tu′ are marked by the S-clocks
spatially coincident with the position of the observer u′ when he detects the light
signals.

Let us now illustrate how the same process is seen in the frame S′. In this
case the observer u approaches u′ along the axis x′ with relative velocity ν and
therefore along a straight line of equation

x′ = νt′ − x′
0. (1.15)
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8 Introduction

The position of u at the initial time t′ = 0 is given by some value of the coor-
dinate x′ which we set equal to −x′

0, with x′
0 positive. This value is related to

x0, which appears in (1.11), by an explicit relation that we here ignore.4 The
observer u sends light signals at times t′u. These reach the observer u′ set in the
spatial origin of S′ at the instants t′u′ read on his own clock. The motion of these
signals is described by a straight line whose equation is given in general by

x′ = c (t′ − t′u′). (1.16)

The time of emission by the observer u is fixed by the intersection of the line
(1.16) which describes the motion of the light signal with the line (1.15) which
describes the motion of u, namely

t′u =
t′u′ − x′

0/c

1 − ν/c
. (1.17)

Let us recall again here that while t′u′ is the time read by u′ on his own clock set
stably at the spatial origin of S′, the time t′u is marked by the S′-clocks which
are instantaneously coincident with the moving observer u. Here we exploit the
equivalence between inertial frames regarding the reading of the clocks which
lead to (1.3). After some elementary mathematical steps we obtain

(t′u′)2 =
(

1 − ν2

c2

)
(tu′)2 −

(
1 − ν

c

) x0

c
tu′ +

x′
0

c
t′u′ . (1.18)

This relation, deduced in the case of approaching observers, does not coincide
with the analogous relation (1.6) deduced in the case of observers receding from
each other. Although we do not know what the relation between x0 and x′

0 is,
we can prove the symmetry between this case and the previously discussed one.

Let us consider the extension of the light trajectories stemming from u to u′

in the frames S and S′, until they intersect the world line of static observers
located at x0 and x′

0 respectively. Let us denote these observers as u0 and u′
0.

In the frame S, the light signals intercept the observer u0 at times, read on the
clock of u0, given by

tu0 = tu + x0/c. (1.19)

Then Eq. (1.14) can also be written as

tu′ =
tu0

1 + ν/c
. (1.20)

The time marked by the clock of u0 at the arrival of the light signals runs with
the same rate as that of the time marked by the clock of u at the emission of the

4 The quantities x0 and x′
0 are related by a Lorentz transformation but here we cannot

introduce it because the latter presupposes that one knows the relation between the time
rates of the spatially coincident clocks of the frames S and S′, which instead we want to
deduce.
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1.3 Clock synchronization and relativity of time 9

same signals, since u and u0 have zero relative velocity and therefore are to be
considered as the same observer located at different spatial positions. Then we
can still denote tu0 as tu and write relation (1.20) as

tu′ =
tu

1 + ν/c
. (1.21)

A similar argument can be repeated in the frame S′. The time read on the clock
of u′

0, at the intersections of the light rays with the history of the observer u′
0, is

equal to

t′u′
0

= t′u′ − x′
0/c. (1.22)

Relation (1.17) can be written as

t′u =
t′u′

0

1 − ν/c
. (1.23)

The time read on the clock of u′
0 runs at the same rate as that of u′ since u′

0

and u′ are to be considered as the same observer but located at different spatial
positions. From this it follows that (1.23) can also be written as

t′u =
t′u′

1 − ν/c
. (1.24)

We clearly see that the relative motion of approach of u to u′ is equivalent to a
relative motion of recession between the observers u′ and u0 in S and between
u and u′

0 in S′. The result of this comparison is the same as that shown in
the relations (1.6) and (1.9), which are then independent of the sense of the
relative motion, as expected. Moreover, this conclusion implies for consistency
that, setting in (1.18)

t′u′ =

√
1 − ν2

c2
tu′ , (1.25)

it follows that

−
(
1 − ν

c

) x0

c
tu′ +

x′
0

c
t′u′ = 0. (1.26)

From this and (1.25) we further deduce that

x′
0 =

x0√
1 − ν2/c2

(1 − ν/c). (1.27)

One should notice here that (1.26) must be solved with respect to x′
0 and not

with respect x0 because the corresponding relation (1.25) between times, which
implies (1.26), is relative to the situation where the observer u is the one who
observes the moving frame S′; hence we have to express all quantities of S′ in
terms of the coordinates of S. Equations (1.6) and (1.9) are the starting point for
the arguments which lead to the Lorentz transformations. From the latter, one
deduces a posteriori that Eq. (1.27) is just the Lorentz transform of the spatial
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10 Introduction

coordinate of the point of S with coordinates (x0, tu = x0/c); the corresponding
point of S′ will have coordinates (x′

0, t′u′ =
√

1 − ν2/c2 tu′).
The above analysis shows the important fact that the relativity of time is

the result of the conspiracy of three basic facts, namely the finite velocity of
light, the equivalence of the inertial observers, and the uniqueness of the clock
synchronization procedure.
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