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Introduction

1.1 RAPID GROWTH OF PROTEIN–PROTEIN INTERACTION DATA

Since the sequencing of the human genome was brought to fruition [154,310], the

field of genetics now stands on the threshold of significant theoretical and practical

advances. Crucial to furthering these investigations is a comprehensive understand-

ing of the expression, function, and regulation of the proteins encoded by an organism

[345]. This understanding is the subject of the discipline of proteomics. Proteomics

encompasses a wide range of approaches and applications intended to explicate how

complex biological processes occur at a molecular level, how they differ in various

cell types, and how they are altered in disease states.

Defined succinctly, proteomics is the systematic study of the many and diverse

properties of proteins with the aim of providing detailed descriptions of the structure,

function, and control of biological systems in health and disease [241]. The field has

burst onto the scientific scene with stunning rapidity over the past several years.

Figure 1–1 shows the trend of the number of occurrences of the term “proteome”

found in PubMed bioinformatics citations over the past decade. This figure strikingly

illustrates the rapidly increasing role played by proteomics in bioinformatics research

in recent years.

A particular focus of the field of proteomics is the nature and role of interac-

tions between proteins. Protein–protein interactions (PPIs) regulate a wide array

of biological processes, including transcriptional activation/repression; immune,

endocrine, and pharmacological signaling; cell-to-cell interactions; and metabolic

and developmental control [9,139,167,184]. PPIs play diverse roles in biology and

differ based on the composition, affinity, and lifetime of the association. Noncova-

lent contacts between residue side chains are the basis for protein folding, protein

assembly, and PPI [232]. These contacts facilitate a variety of interactions and associ-

ations within and between proteins. Based on their diverse structural and functional

characteristics, PPIs can be categorized in several ways [230]. On the basis of their

interaction surface, they may be homo- or hetero-oligomeric; as judged by their sta-

bility, they may be obligate or nonobligate; and as measured by their persistence, they

may be transient or permanent. A given PPI can fall into any combination of these

three categorical pairs. An interaction may also require reclassification under certain
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Figure 1–1 Number of results found in PubMed for the term “proteome.” (Reprinted from

[200] with permission of John Wiley & Sons, Inc.)

conditions; for example, it may be mainly transient in vivo but become permanent

under certain cellular conditions.

It has been observed that proteins seldom act as single isolated species while per-

forming their functions in vivo [330]. The analysis of annotated proteins reveals that

proteins involved in the same cellular processes often interact with each other [312].

The function of unknown proteins may be postulated on the basis of their interaction

with a known protein target of known function. Mapping PPIs has not only provided

insight into protein function but also facilitated the modeling of functional pathways

to elucidate the molecular mechanisms of cellular processes. The study of PPIs is

fundamental to understanding how proteins function within the cell. Characterizing

the interactions of proteins in a given cellular proteome will be the next milestone

along the road to understand the biochemistry of the cell.

The result of two or more proteins interacting with a specific functional objective

can be demonstrated in several different ways. The measurable effects of PPIs have

been outlined by Phizicky and Fields [254]. PPIs can:

■ alter the kinetic properties of enzymes; this may be the result of subtle changes

at the level of substrate binding or at the level of an allosteric effect;

■ act as a common mechanism to allow for substrate channeling;

■ create a new binding site, typically for small effector molecules;

■ inactivate or destroy a protein; or

■ change the specificity of a protein for its substrate through interaction with dif-

ferent binding partners; for example, demonstrate a new function that neither

protein can exhibit alone.

PPIs are much more widespread than once suspected, and the degree of regulation

that they confer is large. To properly understand their significance in the cell, one

needs to identify the different interactions, understand the extent to which they take

place in the cell, and determine the consequences of the interactions.

In recent years, PPI data have been enriched by high-throughput experimental

methods, such as two-hybrid systems [155,307], mass spectrometry [113,144], and
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protein chip technology [114,205,346]. Integrated PPI networks have been built from

these heterogeneous data sources. However, the large volume of PPI data currently

available has posed a challenge to experimental investigation. Computational anal-

ysis of PPI networks has become a necessary supplemental tool for understanding

the functions of uncharacterized proteins.

1.2 COMPUTATIONAL ANALYSIS OF PPI NETWORKS

A PPI network can be described as a complex system of proteins linked by interac-

tions. The computational analysis of PPI networks begins with the representation of

the PPI network structure. The simplest representation takes the form of a mathemat-

ical graph consisting of nodes and edges [314]. Proteins are represented as nodes in

such a graph; two proteins that interact physically are represented as adjacent nodes

connected by an edge. Based on this graphic representation, various computational

approaches, such as data mining, machine learning, and statistical approaches, can

be designed to reveal the organization of PPI networks at different levels. An exami-

nation of the graphic form of the network can yield a variety of insights. For example,

neighboring proteins in the graph are generally considered to share functions (“guilt

by association”). Thus, the functions of a protein may be predicted by looking at

the proteins with which it interacts and the protein complexes to which it belongs.

In addition, densely connected subgraphs in the network are likely to form protein

complexes that function as a unit in a certain biological process. An investigation of

the topological features of the network (e.g., whether it is scale-free, a small network,

or governed by the power law) can also enhance our understanding of the biological

system [5].

In general, the computational analysis of PPI networks is challenging, with these

major difficulties being commonly encountered:

■ The protein interactions are not reliable. Large-scale experiments have yielded

numerous false positives. For example, as reported in [288], high-throughput

yeast two-hybrid (Y2H) assays are ∼50% reliable. It is also likely that there are

many false negatives in the PPI networks currently under study.

■ A protein can have several different functions. A protein may be included in one

or more functional groups. Therefore, overlapping clusters should be identified

in the PPI networks. Since conventional clustering methods generally produce

pairwise disjoint clusters, they may not be effective when applied to PPI networks.

■ Two proteins with different functions frequently interact with each other. Such

frequent, random connections between the proteins in different functional groups

expand the topological complexity of the PPI networks, posing difficulties to the

detection of unambiguous partitions.

Recent studies of complex systems [5,227] have attempted to understand and

characterize the structural behaviors of such systems from a topological perspective.

Such features as small-world properties [319], scale-free degree distributions [28,29],

and hierarchical modularity [261] have been observed in complex systems, elements

that are also characteristic of PPI networks. Therefore, topological methods can be
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used to address the challenges mentioned earlier and to facilitate the efficient and

accurate analysis of PPI networks.

1.2.1 Topological Features of PPI Networks

Barabasi and Oltvai [29] introduced the concept of degree distribution, P(k), to

quantify the probability that a selected node in a network will have exactly k links.

Networks of different types can be distinguished by their degree distributions. For

example, a random network follows a Poisson distribution. In contrast, a scale-free

network has a power-law degree distribution, P(k) ∼ k−γ , indicating that a few

hubs bind numerous small nodes. When 2 ≤ γ ≤ 3, the hubs play a significant role

in the network [29]. Recent publications have indicated that PPI networks have the

features of a scale-free network [121,161,198,313]; therefore, their degree distribu-

tion approximates a power law, P(k) ∼ k−γ . In scale-free networks, most proteins

participate in only a few interactions, while a small set of hubs participate in dozens

of interactions.

PPI networks also have a characteristic property known as the “small-world

effect,” which states that any two nodes can be connected via a short path of a few

links. The small-world phenomenon was first investigated as a concept in sociology

[217] and is a feature of a range of networks arising in both nature and technol-

ogy, including the Internet [5], scientific collaboration networks [224], the English

lexicon [280], metabolic networks [106], and PPI networks [284,313]. Although the

small-world effect is a property of random networks, the path length in scale-free

networks is much shorter than that predicted by the small-world effect [74,75]. There-

fore, scale-free networks are “ultra-small.” This short path length indicates that local

perturbations in metabolite concentrations could permeate an entire network very

quickly. In PPI networks, highly connected nodes (hubs) seldom directly link to

each other [211]. This differs from the assortative nature of social networks, in which

well-connected individuals tend to have direct connections to each other. In contrast,

biological networks have the property of disassortativity, in which highly connected

nodes are only infrequently linked.

A number of recent publications have proposed the use of centrality indices,

including node degree, pagerank, clustering coefficient, betweenness centrality, and

bridging centrality metrics, as measurements of the importance of components in

a network [47,53,103,110,226,268,319]. For instance, betweenness centrality [225]

was proposed to detect the optimal location for partitioning a network [122,145].

The modified betweenness cut approach has been suggested for use with weighted

PPI networks that integrate gene expression [61]. Jeong’s group has espoused the

degree of a node as a key basis for the identification of essential network compo-

nents [161]. In this model, power-law networks are very robust to random attacks

but highly vulnerable to targeted attacks [7]. Hahn’s group identified differences in

degree, betweenness, and closeness centrality between essential and nonessential

genes in three eukaryotic PPI networks (yeast, worm, and fly) [131]. Estrada’s group

introduced a new subgraph centrality measure to characterize the participation of

each node in all subgraphs in a network [103,102]. Palumbo’s group sought to identify

lethal nodes by arc deletion, thus facilitating the isolation of network subcomponents

[239]. Guimera’s group devised a clustering method to identify functional modules
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in metabolic pathways and categorized the role of each component in the pathway

according to its topological location relative to detected functional modules [129].

As we will subsequently discuss in greater detail, the unique topological fea-

tures found to be characteristic of PPI networks will play significant roles in the

computational analysis of these networks.

1.2.2 Modularity Analysis

The idea of functional modules, introduced in [139], offers a major conceptual tool

for the systematic analysis of a biological system. A functional module in a PPI net-

work represents a maximal set of functionally associated proteins. In other words, it is

composed of those proteins that are mutually involved in a given biological process or

function. A wide range of graph-theoretic approaches have been employed to iden-

tify functional modules in PPI networks. However, these approaches have tended to

be limited in accuracy due to the presence of unreliable interactions and the complex

connectivity of the networks [288]. In particular, the topological complexity of PPI

networks, arising from the overlapping patterns of modules and cross talks between

modules, poses challenges to the identification of functional modules. Because a

protein generally performs different biological processes or functions in different

environments, real functional modules are overlapping. Moreover, the frequent,

dynamic cross connections between different functions are biologically meaningful

and must be taken into account [274].

In an attempt to parse this complexity, the hierarchical organization of modules

in biological networks has been recently proposed [261]. The architecture of this

model is based on a scale-free topology with embedded modularity. In this model,

the significance of a few hub nodes is emphasized, and these nodes are viewed as

the determinants of survival during network perturbations and as the essential back-

bone of the hierarchical structure. This hierarchical network model can plausibly

be applied to PPI networks because cellular functionality is typically hierarchical in

nature, and PPI networks include a few hub nodes that are biologically lethal.

The identification of functional modules in PPI networks or modularity analysis

can be successfully accomplished through the use of cluster analysis. Cluster anal-

ysis is invaluable in elucidating network topological structure and the relationships

among network components. Typically, clustering approaches focus on detecting

densely connected subgraphs within the graphic representation of a PPI network.

For example, the maximum clique algorithm [286] is used to detect fully connected,

complete subgraphs. To compensate for the high-density threshold imposed by this

algorithm, relatively dense subgraphs can be identified in lieu of complete subgraphs,

either by using a density threshold or by optimizing an objective density function

[56,286]. A number of density-based clustering algorithms using alternative density

functions have been presented [12,24,247].

As noted, hierarchical clustering approaches can plausibly be applied to biolog-

ical networks because of the hierarchical nature of functional modules [261,297].

These approaches iteratively merge nodes or recursively divide a graph into two

or more subgraphs. To merge nodes iteratively, the similarity or distance between

two nodes or two groups of nodes is measured and a pair is selected for merger in

each iteration [17,263]. Recursive division of a graph involves the selection of nodes
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or edges to be cut. Partition-based approaches have also been applied to biological

networks. One partition-based clustering approach, the Restricted Neighborhood

Search Clustering (RNSC) algorithm [180], determines the best partition using a cost

function. In addition, other approaches have been applied to biological networks.

For example, the Markov Clustering Algorithm (MCL) finds clusters using iterative

rounds of expansion and inflation that, respectively, prefer the strongly connected

regions and weaken the sparsely connected regions [308]. The line graph generation

method [250] transforms a network of proteins connected by interactions into a net-

work of connected interactions and then uses the MCL algorithm to cluster the PPI

network. Samantha and Liang [272] applied a statistical approach to the clustering

of proteins based on the premise that a pair of proteins sharing a significantly greater

number of common neighbors will have a high functional similarity. The recently

introduced STM algorithm [148] votes a representative of a cluster for each node.

Topological metrics can be incorporated into the modularity analysis of PPI net-

works. From our studies, we have observed that the bridging nodes identified in PPI

networks serve as the connecting nodes between protein modules; therefore, remov-

ing the bridging nodes preserves the structural integrity of the network. Such findings

can play an important role in the modularity analysis of PPI networks. Removal

of the bridging nodes yields a set of components disconnected from the network.

Thus, using bridging centrality to remove the bridging nodes can be an excellent

preprocessing procedure to estimate the number and location of modules in the

PPI network. Results of this research [151,152] have shown that such approaches

can generate larger modules that discard fewer proteins, permitting more accurate

functional detection than other current methods.

1.2.3 Prediction of Protein Functions in PPI Networks

Predicting protein function can be, in itself, the ultimate objective of the analysis of a

PPI network. Despite the many extensive studies of yeast that have been undertaken,

there are still a number of functionally uncharacterized proteins in the yeast database.

The functional annotation of human proteins can provide a strong foundation for

the complete understanding of cell mechanisms, information that is invaluable for

drug discovery and development. The increased interest in and availability of PPI

networks have catalyzed the development of computational methods to elucidate

protein functions.

Protein functions may be predicted on the basis of modularization algorithms. If

an unknown protein is included in a functional module, it is expected to contribute

toward the function that the module represents. The generated functional modules

may thus provide a framework within which to predict the functions of unknown

proteins. Each generated module may contain a few uncharacterized proteins along

with a larger number of known proteins. It can be assumed that the unknown proteins

play a positive role in realizing the function of the generated module. However, pre-

dictions arrived at through these means may be inaccurate, since the accuracy of the

modularization process itself is typically low. For greater reliability, protein functions

should be predicted directly from the topology or connectivity of PPI networks.

Several topology-based approaches that predict protein function on the basis of

PPI networks have been introduced. At the simplest level, the “neighbor counting
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method” predicts the function of an unknown protein by the frequency of known

functions of the immediate neighbor proteins [274]. The majority of functions of the

immediate neighbors can be statistically assessed [143]. The function of a protein

can be assumed to be independent of all other proteins, given the functions of its

immediate neighbors. This assumption gives rise to a Markov random field model

[85,196]. Recently, the number of common neighbors of the known protein and the

unknown protein has been taken as the basis for the prediction of function [201].

Machine learning has been widely applied to the analysis of PPI networks, and,

in particular, to the prediction of protein functions. A variety of methods have been

developed to predict protein function on the basis of different information sources.

Some of the inputs used by these methods include protein structure and sequence,

protein domain, PPIs, genetic interactions, and gene expression analysis. The accu-

racy of prediction can be enhanced by drawing upon multiple sources of information.

The Gene Ontology (GO) database [84] is one example of such semantic integration.

1.2.4 Integration of Domain Knowledge

As noted, the accuracy of results obtained from computational approaches can be

compromised by the inclusion of false connections and the high complexity of net-

works. The reliability of this process can be improved by the integration of other

functional information. Initially, the identification of similarities in gene sequence

can be a primary indicator of a functional association between two genes. Addi-

tionally, genome-level methods for functional inference, such as gene fusion events

and phylogenetic profiling, can generate useful data pointing to functional linkages.

Beyond this, we know that genes with correlated expression profiles determined

through microarray experiments are likely to be functionally related. Many studies

[65,66,153,304] have investigated the integration of PPI networks with gene expres-

sion data to improve the accuracy of the functional modules identified. Finally, as

briefly noted earlier, GO [18,301] can be a useful data source to combine with the PPI

networks. GO is currently one of the most comprehensive and well-curated ontol-

ogy databases in the bioinformatics community. It represents a collaborative effort

to address the need for consistent descriptions of genes and gene products. The GO

database includes GO terms and their relationships. The former are well-defined

biological terms organized into three general conceptual categories that are shared

across different organisms: biological processes, molecular functions, and cellular

components. The GO database also provides annotations to each GO term, and

each gene can be annotated on one or more GO terms. The GO database and its

annotations can thus be a significant resource for the discovery of functional knowl-

edge. These tools have been employed to facilitate the analysis of gene expression

data [89,105,147] and have been integrated with unreliable PPI networks to accu-

rately predict functions of unknown proteins [84] and identify functional modules

[68,70].

1.3 SIGNIFICANT APPLICATIONS

The systematic analysis of PPIs can enable a better understanding of cellular orga-

nization, processes, and functions. Functional modules can be identified from the
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PPI networks that have been derived from experimental data sets. There are many

significant applications following this analysis. In this book, the following principal

applications to which this analysis can be applied will be discussed:

■ Predicting protein function. As noted earlier, the most basic application of PPI

networks is the use of topological analysis to predict protein function. The gen-

erated functional modules can serve as a framework within which to predict

the functions of unknown proteins. Each generated module may contain a few

uncharacterized proteins. By associating unknown proteins with the known pro-

teins, we can suggest that those proteins participate positively in performing the

functions assigned to the modules.

■ Lethality analysis. The topological analysis of PPI networks can be used to sys-

tematically assess the biological importance of bridging and other nodes in a PPI

network [65,66,70,148]. Lethality, a crucial factor in characterizing the biologi-

cal indispensability of a protein, is determined by examining whether a module

is functionally disrupted when the protein is eliminated. Information regarding

lethality is compiled in most PPI databases. For example, the MIPS database

[214] indicates the lethality or viability of each included protein. Such sources

allow the researcher to compare the lethality of nodes with high bridging-score

values to that associated with other competing network parameters in the PPI

networks. These comparisons reveal that nodes with the highest bridging scores

are less lethal than both randomly selected nodes and nodes with high degree

centrality. However, the average lethality of the neighbors of the nodes with the

highest bridging scores is greater than that of a randomly selected subset. Our

research has indicated that bridging nodes have relatively low lethality; inter-

connecting nodes are characterized by higher lethality; and modular nodes and

peripheral nodes have, respectively, the highest and lowest proportion of lethal

proteins. These results imply that many of the bridging nodes do not perform

tasks critical to biological functions [151,152]. As a result, these nodes would

serve as good targets for drugs, as discussed later.

■ Assessing the druggability of molecular targets from network topology. Translat-

ing the societal investments in the Human Genome Project and other similar

large-scale efforts into therapies for human diseases is an important scientific

imperative in the post–human-genome era. The efficacy, specificity/selectivity,

and side-effect characteristics of well-designed drugs depend largely on the appro-

priate choice of pharmacological target. For this reason, the identification of

molecular targets is a very early and critical step in the drug discovery and devel-

opment process. The goal of the target identification process is to arrive at a

very limited subset of biological molecules that will become the principal focus

for the subsequent discovery research, development, and clinical trials. Phar-

macological targets can span the range of biological molecules from DNA and

lipids to metabolites. In fact, though, the majority of pharmacological targets are

proteins. Effective pharmacological intervention with the target protein should

significantly impact the key molecular processes in which the protein participates,

and the resultant perturbation should be successful in modulating the pathophys-

iological process of interest. Another important consideration that is sometimes

overlooked during the target identification step is the potential for side effects.
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Ideally, an appropriate balance should be found among efficacy, selectivity, and

side effects. In practice, however, compromises are often required in the areas of

specificity/selectivity and side effects, since pharmacological interventions with

proteins that are central to key processes will likely affect many biological path-

ways. We have observed that the biological correlates of the nodes with the

highest bridging scores indicate that these nodes are less lethal than other nodes

in PPI networks. Thus, they are promising drug targets from the standpoints of

efficacy and side effects.

1.4 ORGANIZATION OF THIS BOOK

This book is intended to provide an in-depth examination of computational analysis

as applied to PPI networks, offering perspectives from data mining, machine learning,

graph theory, and statistics. The remainder of this book is organized as follows:

■ Chapter 2 introduces the three principal experimental approaches that are

currently used for generating PPI data: the Y2H system [121,156,307], mass

spectrometry (MS) [113,120,144,187,210,303], and protein microarray methods

[114,346].

■ Chapter 3 discusses various computational approaches to the prediction of

protein interactions, including genomic-scale, sequence-based, structure-based,

learning-sequence-based, and network topology-based techniques.

■ Chapter 4 introduces the basic properties of and metrics applied to PPI net-

works. Basic concepts in graphic representation employed to characterize various

properties of PPI networks are defined for use throughout the balance of

the book.

■ Chapter 5 discusses the modularity analysis of PPI networks. Various modularity

analysis algorithms used to identify modules in PPI networks are discussed, and

an overview of the validation methods for modularity analysis is presented.

■ Chapter 6 explores the topological analysis of PPI networks. Various metrics

used for assessing specific topological features of PPI networks are presented

and discussed.

■ Chapter 7 focuses on greater detail on one type of modularity algorithm,

specifically, the distance-based modularity analysis of PPI networks.

■ Chapter 8 focuses on greater detail on graph-theoretic approaches for modularity

analysis of PPI networks.

■ Chapter 9 discusses the flow-based analysis of PPI networks.

■ Chapter 10 examines statistical- and machine learning-based analysis of PPI

networks.

■ Chapter 11 discusses the integration of domain knowledge into the analysis of

PPI networks.

■ Chapter 12 presents some of the more recent approaches that have been devel-

oped for incorporating diverse biological information into the explorative analysis

of PPI networks.

■ Chapter 13 offers a synthesis of the methods and concepts discussed through-

out the book and reflections on potential directions for future research and

applications.
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1.5 SUMMARY

The analysis of PPI networks poses many challenges, given the inherent complexity

of these networks, the high noise level characteristic of the data, and the presence of

unusual topological phenomena. As discussed in this chapter, effective approaches

are required to analyze PPI data and the resulting PPI networks. Recently, a variety

of data-mining and statistical techniques have been applied to this end, with varying

degrees of success. This book is intended to provide researchers with a working

knowledge of many of the advanced approaches currently available for this purpose.

(Some of the material in this chapter is reprinted from [200] with permission of John

Wiley & Sons, Inc.)
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