
Introduction

0.1 The leitmotiv

Nowadays, nearly every kind of information is turned into digital form. Digital
cameras turn every image into a computer file. The same happens to musi-
cal recordings or movies. Even our mathematical work is registered mainly as
computer files. Analog information is nearly extinct.

While studying dynamical systems (in any understanding of this term)
sooner or later one is forced to face the following question: How can the infor-
mation about the evolution of a given dynamical system be most precisely
turned into a digital form? Researchers specializing in dynamical systems are
responsible for providing the theoretical background for such a transition.

So suppose that we do observe a dynamical system, and that we indeed
turn our observation into digital form. That means, from time to time, we pro-
duce a digital “report,” a computer file, containing all our observations since
the last report. Assume for simplicity that such reports are produced at equal
time distances, say, at integer times. Of course, due to bounded capacity of
our recording devices and limited time between the reports, our files have
bounded size (in bits). Because the variety of digital files of bounded size
is finite, we can say that at every integer moment of time we produce just
one symbol, where the collection of all possible symbols, i.e. the alphabet,
is finite.

An illustrative example is filming a scene using a digital camera. Every unit
of time, the camera registers an image, which is in fact a bitmap of some fixed
size (camera resolution). The camera turns the live scene into a sequence of
bitmaps. We can treat every such bitmap as a single symbol in the alphabet of
the “language” of the camera.

The sequence of symbols is produced as long as the observation is being
conducted. We have no reason to restrict the global observation time, and we
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2 Introduction

can agree that it goes on forever. Sometimes (but not always), we can imagine
that the observation has been conducted since forever in the past as well. In
this manner, the history of our recording takes on the form of a unilateral or
bilateral sequence of symbols from some finite alphabet. Advancing in time by
a unit corresponds, on one hand, to the unit-time evolution of the dynamical
system, on the other, to shifting the enumeration of our sequence of symbols.
This way we have come to the conclusion that the digital form of the observa-
tion is nothing else but an element of the space of all sequences of symbols,
and the action on this space is the familiar shift transformation advancing the
enumeration.

Now, in most situations, such a “digitalization” of the dynamical system will
be lossy, i.e., it will capture only some aspects of the observed dynamical sys-
tem, and much of the information will be lost. For example, the digital camera
will not be able to register objects hidden behind other objects, moreover, it
will not see objects smaller than one pixel or their movements until they pass
from one pixel to another. However, it may happen that, after a while, each
object will eventually become detectable, and we will be able to reconstruct its
trajectory from the recorded information.

Of course, lossy digitalization is always possible and hence presents a
lesser kind of challenge. We will be much more interested in lossless
digitalization. When and how is it possible to digitalize a dynamical system
so that no information is lost, i.e., in such a way that after viewing the entire
sequence of symbols we can completely reconstruct the evolution of the
system?

In this book the task of encoding a system with possibly smallest alpha-
bet is refereed to as “data compression.” The reader will find answers to the
above question at two major levels: measure-theoretic, and topological. In the
first case the digitalization is governed by the Kolmogorov–Sinai entropy of
the dynamical system, the first major subject of this book. In the topologi-
cal setup the situation is more complicated. Topological entropy, our second
most important notion, turns out to be insufficient to decide about digitaliza-
tion that respects the topological structure. Thus another parameter, called
symbolic extension entropy, emerges as the third main object discussed in
the book.

We also study entropy (both measure-theoretic and topological) for
operators on function spaces, which generalize classical dynamical systems.
The reference to data compression is not as clear here and we concentrate
more on technical properties that carry over from dynamical systems,
leaving the precise connection with information theory open for further
investigation.
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0.2 A few words about the history of entropy 3

0.2 A few words about the history of entropy

Below we review very briefly the development of the notion of entropy focus-
ing on the achievements crucial for the genesis of the basic concepts of entropy
discussed in this book. For a more complete survey we refer to the expository
article [Katok, 2007].

The term “entropy” was coined by a German physicist Rudolf Clausius from
Greek “en-” = in + “trope” = a turning [Clausius, 1850]. The word reveals anal-
ogy to “energy” and was designed to mean the form of energy that any energy
eventually and inevitably “turns into” – a useless heat. The idea was inspired by
an earlier formulation by French physicist and mathematician Nicolas Léonard
Sadi Carnot [Carnot, 1824] of what is now known as the Second Law of Ther-
modynamics: entropy represents the energy no longer capable to perform work,
and in any isolated system it can only grow.

Austrian physicist Ludwig Boltzmann put entropy into the probabilistic
setup of statistical mechanics [Boltzmann, 1877]. Entropy has also been gen-
eralized around 1932 to quantum mechanics by John von Neumann [see von
Neumann, 1968].

Later this led to the invention of entropy as a term in probability and infor-
mation theory by an American electronic engineer and mathematician Claude
Elwood Shannon, now recognized as the father of information theory. Many
of the notions have not changed much since they first occurred in Shannon’s
seminal paper A Mathematical Theory of Communication [Shannon, 1948].
Dynamical entropy in dynamical systems was created by one of the most
influential mathematicians of modern times, Andrei Nikolaevich Kolmogorov,
[Kolmogorov, 1958, 1959] and improved by his student Yakov Grigorevich
Sinai who practically brought it to the contemporary form [Sinai, 1959].

The most important theorem about the dynamical entropy, so-called
Shannon–McMillan–Breiman Theorem gives this notion a very deep mean-
ing. The theorem was conceived by Shannon [Shannon, 1948], and proved
in increasing strength by Brockway McMillan [McMillan, 1953] (L1-
convergence), Leo Breiman [Breiman, 1957] (almost everywhere convergence),
and Kai Lai Chung [Chung, 1961] (for countable partitions). In 1970 Wolfgang
Krieger obtained one of the most important results, from the point of view of
data compression, about the existence (and cardinality) of finite generators for
automorphisms with finite entropy [Krieger, 1970].

In 1970 Donald Ornstein proved that Kolmogorov–Sinai entropy was a a
complete invariant in the class of Bernoulli systems, a fact considered one
of the most important features of entropy (alternatively of Bernoulli systems)
[Ornstein, 1970a].
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4 Introduction

In 1965, Roy L. Adler, Alan G. Konheim and M. Harry McAndrew car-
ried the concept of dynamical entropy over to topological dynamics [Adler
et al., 1965] and in 1970 Efim I. Dinaburg and (independently) in 1971 Rufus
Bowen redefined it in the language of metric spaces [Dinaburg, 1970; Bowen,
1971]. With regard to entropy in topological systems, probably the most impor-
tant theorem is the Variational Principle proved by L. Wayne Goodwyn (the
“easy” direction) and Timothy Goodman (the “hard” direction), which con-
nects the notions of topological and Kolmogorov–Sinai entropy [Goodwyn,
1971; Goodman, 1971] (earlier Dinaburg proved both directions for finite-
dimensional spaces [Dinaburg, 1970]).

The theory of symbolic extensions of topological systems was initiated by
Mike Boyle around 1990 [Boyle, 1991]. The outcome of this early work is
published in [Boyle et al., 2002]. The author of this book contributed to estab-
lishing that invariant measures and their entropies play a crucial role in com-
puting the so-called symbolic extension entropy [Downarowicz, 2001; Boyle
and Downarowicz, 2004; Downarowicz, 2005a].

Dynamical entropy generalizing the Kolmogorov–Sinai dynamical entropy
to noncommutative dynamics occurred as an adaptation of von Neumann’s
quantum entropy in a work of Robert Alicki, Johan Andries, Mark Fannes and
Pim Tuyls [Alicki et al., 1996] and then was applied to doubly stochastic oper-
ators by Igor I. Makarov [Makarov, 2000]. The axiomatic approach to entropy
of doubly stochastic operators, as well as topological entropy of Markov oper-
ators have been developed in [Downarowicz and Frej, 2005].

The term “entropy” is used in many other branches of science, sometimes
distant from physics or mathematics (such as sociology), where it no longer
maintains its rigorous quantitative character. Usually, it roughly means “disor-
der,” “chaos,” “decay of diversity” or “tendency toward uniform distribution of
kinds.”

0.3 Multiple meanings of entropy

In the following paragraphs we review some of the various meanings of the
word “entropy” and try to explain how they are connected. We devote a few
pages to explain how dynamical entropy corresponds to data compression rate;
this interpretation plays a central role in the approach to entropy in dynamical
systems presented in the book. The notation used in this section is temporary.

0.3.1 Entropy in physics

In classical physics, a physical system is a collection of objects (bodies) whose
state is parametrized by several characteristics such as the distribution of
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0.3 Multiple meanings of entropy 5

density, pressure, temperature, velocity, chemical potential, etc. The change
of entropy of a physical system, as it passes from one state to another, is

ΔS =
∫

dQ

T
,

where dQ denotes an element of heat being absorbed (or emitted; then it has
the negative sign) by a body, T is the absolute temperature of that body at that
moment, and the integration is over all elements of heat active in the passage.
The above formula allows us to compare entropies of different states of a sys-
tem, or to compute entropy of each state up to an additive constant (this is
satisfactory in most cases). Notice that when an element dQ of heat is trans-
mitted from a warmer body of temperature T1 to a cooler one of temperature
T2 then the entropy of the first body changes by −dQ/T1, while that of the
other rises by dQ/T2. Since T2 < T1, the absolute value of the latter fraction
is larger and jointly the entropy of the two-body system increases (while the
global energy remains the same).

A system is isolated if it does not exchange energy or matter (or even infor-
mation) with its surroundings. By virtue of the First Law of Thermodynamics,
the conservation of energy principle, an isolated system can pass only between
states of the same global energy. The Second Law of Thermodynamics intro-
duces irreversibility of the evolution: an isolated system cannot pass from a
state of higher entropy to a state of lower entropy. Equivalently, it says that
it is impossible to perform a process whose only final effect is the transmis-
sion of heat from a cooler medium to a warmer one. Any such transmission
must involve an outside work, the elements participating in the work will also
change their states and the overall entropy will rise.

The first and second laws of thermodynamics together imply that an isolated
system will tend to the state of maximal entropy among all states of the same
energy. The energy distributed in this state is incapable of any further activity.
The state of maximal entropy is often called the “thermodynamical death” of
the system.

Ludwig Boltzmann gave another, probabilistic meaning to entropy. For each
state A the (negative) difference between the entropy of A and the entropy of
the “maximal state” B is nearly proportional to the logarithm of the probability
that the system spontaneously assumes state A,

S(A) − Smax ≈ k log2(Prob(A)).

The proportionality factor k is known as the Boltzmann constant. In this
approach the probability of the maximal state is almost equal to 1, while the
probabilities of states of lower entropy are exponentially small. This provides
another interpretation of the Second Law of Thermodynamics: the system
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6 Introduction

spontaneously assumes the state of maximal entropy simply because all other
states are extremely unlikely.

Example Consider a physical system consisting of an ideal gas enclosed in a
cylindrical container of volume 1. The state B of maximal entropy is clearly the

one where both pressure and temperature are constant (P0 and T0, respectively)
throughout the container. Any other state can be achieved only with help from out-
side. Suppose one places a piston at a position p < 1

2
in the cylinder (the left figure;

thermodynamically, this is still the state B) and then slowly moves the piston to the
center of the cylinder (position 1

2
), allowing the heat to flow between the cylinder

and its environment, where the temperature is T0, which stabilizes the temperature
at T0 all the time. Let A be the final state (the right figure). Note that both states A
and B have the same energy level inside the system.

To compute the jump of entropy one needs to examine what exactly happens
during the passage. The force acting on the piston at position x is proportional to
the difference between the pressures:

F = c

(
P0

1 − p

1 − x
− P0

p

x

)
.

Thus, the work done while moving the piston equals:

W =

1
2∫

p

F dx = cP0

(
(1 − p) ln(1 − p) + p ln p + ln 2

)
.

The function

p �→ (1 − p) ln(1 − p) + p ln p

is negative and assumes its minimal value − ln 2 at p = 1
2

.
Thus the above work W is positive and represents the amount of energy deliv-

ered to the system from outside. During the process the compressed gas on the
right emits heat, while the depressed gas on the left absorbs heat. By conserva-
tion of energy (applied to the enhanced system including the outside world), the
gas altogether will emit heat to the environment equivalent to the delivered work
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0.3 Multiple meanings of entropy 7

ΔQ = −W . Since the temperature is constant all the time, the change in entropy
between states B and A of the gas is simply 1/T0 times ΔQ, i.e.,

ΔS =
1

T0
· cP0

(
−(1 − p) ln(1 − p) − p ln p − ln 2

)
.

Clearly ΔS is negative. This confirms, what was already expected, that the out-
side intervention has lowered the entropy of the gas.

This example illustrates very clearly Boltzmann’s interpretation of entropy.
Assume that there are N particles of the gas independently wandering inside the
container. For each particle the probability of falling in the left or right half of the
container is 1/2. The state A of the gas occurs spontaneously if pN and (1 − p)N
particles fall in the left and right halves of the container, respectively. By elementary
combinatorics formulae, the probability of such an event equals

Prob(A) =
N !

(pN)!((1 − p)N)!
2−N .

By Stirling’s formula (ln n! ≈ n ln n − n for large n), the logarithm of Prob(A)
equals approximately

N
(
−(1 − p) ln(1 − p) − p ln p − ln 2

)
,

which is indeed proportional to the drop ΔS of entropy between the states B and
A (see above).

0.3.2 Shannon entropy

In probability theory, a probability vector p is a sequence of finitely many non-
negative numbers {p1, p2, . . . , pn} whose sum equals 1. The Shannon entropy
of a probability vector p is defined as

H(p) = −
n∑

i=1

pi log2 pi

(where 0 log2 0 = 0). Probability vectors occur naturally in connection with
finite partitions of a probability space. Consider an abstract space Ω equipped
with a probability measure μ assigning probabilities to measurable subsets of
Ω. A finite partition P of Ω is a collection of pairwise disjoint measurable
sets {A1, A2, . . . , An} whose union is Ω. Then the probabilities pi = μ(Ai)
form a probability vector pP. One associates the entropy of this vector with
the (ordered) partition P:

Hμ(P) = H(pP).

In this setup entropy can be linked with information. Given a measurable set
A, the information I(A) associated with A is defined as − log2(μ(A)). The
information function IP associated with a partition P = {A1, A2, . . . , An} is
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8 Introduction

defined on the space Ω and it assumes the constant value I(Ai) at all points ω

belonging to the set Ai. Formally,

IP(ω) =
n∑

i=1

− log2(μ(Ai))1IAi
(ω),

where 1IAi
is the characteristic function of Ai. One easily verifies that the

expected value of this function with respect to μ coincides with the entropy
Hμ(P).

We shall now give an interpretation of the information function and entropy,
the key notions in entropy theory. The partition P of the space Ω associates with
each element ω ∈ Ω the “information” that gives an answer to the question
“in which Ai are you?”. That is the best knowledge we can acquire about the
points, based solely on the partition. One bit of information is equivalent to
acquiring an answer to a binary question, i.e., a question of a choice between
two possibilities. Unless the partition has two elements, the question “in which
Ai are you?” is not binary. But it can be replaced by a series of binary questions
and one is free to use any arrangement (tree) of such questions. In such an
arrangement, the number of questions N(ω) (i.e., the amount of information in
bits) needed to determine the location of the point ω within the partition may
vary from point to point (see the example below). The smaller the expected
value of N(ω) the better the arrangement. It turns out that the best arrangement
satisfies IP(ω) ≤ N(ω) ≤ IP(ω) + 1 for μ-almost every ω. The difference
between IP(ω) and N(ω) follows from the crudeness of the measurement of
information by counting binary questions; the outcome is always a positive
integer. The real number IP(ω) can be interpreted as the precise value. Entropy
is the expected amount of information needed to locate a point in the partition.

Example Consider the unit square representing the space Ω, where the prob-
ability is the Lebesgue measure (i.e., the surface area), and the partition P of Ω
into four sets Ai of probabilities 1

8
, 1

4
, 1

8
, 1

2
, respectively, as shown in the figure.
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0.3 Multiple meanings of entropy 9

The information function equals − log2(
1
8
) = 3 on A1 and A3, − log2(

1
4
) = 2 on

A2 and − log2(
1
2
) = 1 on A4. The entropy of P equals

H(P) =
1

8
· 3 +

1

4
· 2 +

1

8
· 3 +

1

2
· 1 =

7

4
.

The arrangement of questions that optimizes the expected value of the number of
questions asked is the following:

1. Are you in the left half?
The answer “no”, locates ω in A4 using one bit. Otherwise the next question is:

2. Are you in the central square of the left half?
The “yes” answer locates ω in A2 using two bits. If not, the last question is:

3. Are you in the top half of the whole square?
Now “yes” or “no” locate ω in A1 or A3, respectively. This takes three bits.

Question 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yes → Question 2

⎧⎪⎨
⎪⎩

yes → A2 (2 bits)

no → Question 3

{
yes → A1 (3 bits)
no → A3 (3 bits)

no → A4 (1 bit)

In this example the number of questions equals exactly the information function at
every point and the expected number of question equals the entropy 7

4
. There does

not exist a better arrangement of questions. Of course, such an accuracy is possible
only when the probabilities of the sets Ai are integer powers of 2; in general the
information is not integer valued.

Another interpretation of Shannon entropy deals with the notion of uncer-
tainty. Let X be a random variable defined on the probability space Ω and
assuming values in a finite set {x1, x2, . . . , xn}. The variable X generates a
partition P of Ω into the sets Ai = {ω ∈ Ω : X(ω) = xi} (called the preimage
partition). The probabilities pi = μ(Ai) = Prob{X = xi} form a probability
vector called the distribution of X. Suppose an experimenter knows the distri-
bution of X and tries to guess the outcome of X before performing the exper-
iment, i.e., before picking some ω ∈ Ω and reading the value X(ω). His/her
uncertainty about the outcome is the expected value of the information he/she
is missing to be certain. As explained above that is exactly the entropy Hμ(P).

0.3.3 Connection between Shannon and Boltzmann entropy

Both notions in the title of this subsection refer to probability and there is
an evident similarity in the formulae. But the analogy fails to be obvious. In
the literature many different attempts toward understanding the relation can be
found. In simple words, the interpretation relies on the distinction between the
macroscopic state considered in classical thermodynamics and the microscopic
states of statistical mechanics. A thermodynamical state A (a distribution of
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10 Introduction

pressure, temperature, etc.) can be realized in many different ways ω at the
microscopic level, where one distinguishes all individual particles, their posi-
tions and velocity vectors. As explained above, the difference of Boltzmann
entropies S(A)−Smax is proportional to log2(Prob(A)), the logarithm of the
probability of the macroscopic state A in the probability space Ω of all micro-
scopic states ω. This leads to the equation

Smax − S(A) = k · I(A), (0.3.1)

where I(A) is the probabilistic information associated with the set A ⊂ Ω.
So, Boltzmann entropy seems to be closer to Shannon information rather than
Shannon entropy. This interpretation causes additional confusion, because
S(A) appears in this equation with negative sign, which reverses the direction
of monotonicity; the more information is “associated” with a macrostate A the
smaller its Boltzmann entropy. This is usually explained by interpreting what
it means to “associate” information with a state. Namely, the information about
the state of the system is an information available to an outside observer. Thus
it is reasonable to assume that this information acually “escapes” from the sys-
tem, and hence it should receive the negative sign. Indeed, it is the knowledge
about the system possessed by an outside observer that increases the usefulness
of the energy contained in that system to do physical work, i.e., it decreases the
system’s entropy.

The interpretation goes further: each microstate in a system appearing to
the observer as being in macrostate A still “hides” the information about its
“identity.” Let Ih(A) denote the joint information still hiding in the system
if its state is identified as A. This entropy is clearly maximal at the maximal
state, and then it equals Smax/k. In a state A it is diminished by I(A), the
information already “stolen” by the observer. So, one has

Ih(A) =
Smax

k
− I(A).

This, together with (0.3.1), yields

S(A) = k · Ih(A),

which provides a new interpretation to the Boltzmann entropy: it is propor-
tional to the information still “hiding” in the system provided the macrostate
A has been detected.

So far the entropy was determined up to an additive constant. We can com-
pute the change of entropy when the system passes from one state to another.
It is very hard to determine the proper additive constant of the Boltzmann
entropy, because the entropy of the maximal state depends on the level of pre-
cision of identifying the microstates. Without a quantum approach, the space
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