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Introduction

It is fair to say that the subject known today as complex dynamics – the

study of iterations of analytic functions – originated in the pioneering

works of P. Fatou and G. Julia early in the twentieth century (see the

references [Fat] and [Ju]). In possession of what was then a new tool,

Montel’s theorem on normal families, Fatou and Julia each investigated

the iteration of rational maps of the Riemann sphere and found that

these dynamical systems had an extremely rich orbit structure. They

observed that each rational map produced a dichotomy of behavior for

points on the Riemann sphere. Some points – constituting a totally

invariant open set known today as the Fatou set – showed an essentially

dissipative or wandering character under iteration by the map. The

remaining points formed a totally invariant compact set, today called

the Julia set . The dynamics of a rational map on its Julia set showed a

very complicated recurrent behavior, with transitive orbits and a dense

subset of periodic points. Since the Julia set seemed so difficult to anal-

yse, Fatou turned his attention to its complement (the Fatou set). The

components of the Fatou set are mapped to other components, and Fatou

observed that these seemed to eventually to fall into a periodic cycle of

components. Unable to prove this fact, but able to verify it for many

examples, Fatou nevertheless conjectured that rational maps have no

wandering domains. He also analysed the periodic components and was

essentially able to classify them into finitely many types.

It soon became apparent that even the local dynamics of an analytic

map was not well understood. It was not always possible to linearize

the dynamics of a map near a fixed or periodic point, and remarkable

examples to that effect were discovered by H. Cremer. In the succeeding

decades researchers in the subject turned to this linearization problem,
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2 Introduction

and the more global aspects of the dynamics of rational maps were all

but forgotten for about half a century.

With the arrival of fast computers and the first pictures of the Man-

delbrot set, interest in the subject began to be revived. People could

now draw computer pictures of Julia sets that were not only of great

beauty but also inspired new conjectures. But the real revolution in the

subject came with the work of D. Sullivan in the early 1980s. He was

the first to realize that the Fatou–Julia theory was strongly linked to the

theory of Kleinian groups, and he established a dictionary between the

two theories. Borrowing a fundamental technique first used by Ahlfors

in the theory of Kleinian groups, Sullivan proved Fatou’s long-standing

conjecture on wandering domains. With this theorem Sullivan started a

new era in the theory of iterations of rational functions.

Our goal in this book is to present some of the main tools that are

relevant to these developments (and to other more recent ones). Our

efforts are concentrated on the exposition of only a few tools. We tried

to select at least one interesting dynamical application for each tool pre-

sented, but it was not possible to be very systematic. Many interesting

techniques had to be omitted, as well as many of the more interest-

ing contemporary applications. There are a number of superbly written

texts in complex dynamics with a more systematic exposition of theory;

we strongly recommend [B2], [CG], [Mi1], [MNTU], as well as the more

specialized [McM1, McM2].

The remainder of this introduction is devoted to a more careful expla-

nation of the basic concepts involved in the above discussion and also to

a brief description of the contents of the book.

Let Ĉ = C * {>} be the Riemann sphere, Polyd(C) be the space of

polynomials of degree d and Ratd(Ĉ) be the space of rational functions

of degree d, d g 2. An element f * Ratd(Ĉ) is the quotient of two

polynomials of degree f d. If the derivative of f at p vanishes or,

equivalently, if f is not locally one to one in any small neighborhood

of p, we say that p is a critical point of f and its image f(p) is a

critical value of f . When f is a polynomial of degree d, the point

> is always a critical point of multiplicity d 2 1 (the polynomial f

is d to one in a neighborhood of >). The number of points in the

pre-image of a point that is not a critical value is constant and equal

to the degree of the rational map f . The sum of the multiplicities of

critical points of a rational map of degree d is equal to 2d 2 2. In

particular, a polynomial of degree d has d 2 1 finite critical points. The

iterates of f are the rational maps f1 = f , fn = f ç fn21. The forward
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Introduction 3

orbit of a point p is the subset O+(p) = {fn(p), n g 0}, its backward

orbit is O2(p) = {w * C; fn(w) = p, n g 0} and its grand orbit is

O(p) = {w * Ĉ; fn(w) = fm(p), m, n g 0}.

Two maps f, g are topologically conjugate if there is a homeomorphism

h : Ĉ ³ Ĉ such that h ç f = g ç h. It follows that h ç fn = gn ç h for

all n and hence that the conjugacy h maps orbits of f into orbits of g.

Since h is continuous, it preserves the asymptotic behavior of the orbits.

A rational map f is structurally stable if there is a neighborhood of f

in the space of rational maps of the same degree such that each map in

this neighborhood is topologically conjugate to f .

We will consider also some special analytic families of rational maps.

By such a family we mean an analytic map F : Λ × Ĉ ³ Ĉ, where Λ is

an open set of parameters in some complex Banach space, such that Fλ :

z ÿ³ F (λ, z) is a rational map for each λ * Λ. The space of polynomials

of degree d is an example of an analytic family of rational maps. We

will also consider the notion of structural stability with respect to such

a family: Fλ is structurally stable, with respect to that family, if there

is a neighborhood of λ in the parameter space Λ such that, for µ in this

neighborhood, Fµ is topologically conjugate to Fλ. The complement of

the stable parameter values is called the bifurcation set of the family. It

is clearly a closed subset of the parameter space Λ.

Given a rational map f , the phase space Ĉ decomposes into the dis-

joint union of two totally invariant subsets, the Fatou set F (f) and the

Julia set J(f). A point z belongs to the Fatou set if there exists a

neighborhood V of z such that the restrictions of all iterates fn to this

neighborhood form an equicontinuous family of functions that is, by the

Arzelá–Ascoli theorem, a pre-compact family in the topology of uniform

convergence on compact subsets. Therefore the Fatou set is an open

set where the dynamics is simple. The Julia set, its complement, is a

compact subset of the Riemann sphere. The topological and dynami-

cal structure of these sets was the main object of study of Fatou [Fat],

Julia [Ju] and others, using compactness results for families of holomor-

phic functions such as Montel’s theorem, mentioned above, and Koebe’s

distortion theorem. These tools will be discussed in Chapter 3.

As mentioned earlier, a complete understanding of the structure of

the Fatou set for any rational map had to wait until the 1980s, when

Sullivan brought to the subject the theory of deformations of conformal

structures. We will discuss this theory in Chapter 4. Sullivan proved

the no-wandering-domains theorem [Su], which states that each con-

nected component of the Fatou set is eventually mapped into a periodic
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4 Introduction

component and that the number of periodic cycles of components is

bounded. See section 4.6 for the proof of Sullivan’s theorem.

The two main results of the deformation theory of conformal struc-

tures are the Ahlfors–Bers theorem, which will be discussed in section

4.4, and the theorem on the extensions and quasiconformality of holo-

morphic motions, which will be discussed in Chapter 5. Using these

two important tools, it is proved in [MSS] and in [McS] that the set

of stable parameter values is dense in any analytic family of rational

maps. In particular the set of structurally stable rational maps is open

and dense. See section 5.4 for a proof of this fundamental structural

stability result. However, the bifurcation set is also a large and intricate

set. In fact, M. Rees proved in [Re] that, in the space Ratd(Ĉ) of all

rational maps, the bifurcation set has positive Lebesgue measure. Also,

for non-trivial analytic families of rational maps, Shishikura [Sh2] and

McMullen [McM3] proved that the Hausdorff dimension of the bifurc-

ation set is equal to the dimension of the parameter space.

A much deeper understanding of the dynamics and bifurcation pat-

terns has been obtained for the special family of quadratic polynomials

{fc(z) = z2 + c | c ∈ C}. On the one hand, for values of c outside the

ball of radius 2 the iterates of the critical point 0 escape to infinity, and,

as we shall see in section 3.3, the Julia set is a Cantor set and all the

corresponding parameter values belong to the same topological conju-

gacy class. On the other hand, Douady and Hubbard proved in [DH2]

that the set of parameter values for which the critical orbit is bounded,

the so-called Mandelbrot set , is connected (see also [DH1] or [MNTU],

pp. 21–2, for a proof) and also showed that its interior is a countable

union of disjoint topological disks. Each of these disks, with the pos-

sible exception of an interior point that corresponds to a map having

a periodic critical point, is a full conjugacy class. The bifurcation set

of the quadratic family is the union of the boundary of the Mandelbrot

set and the countable discrete set of maps with periodic critical points

that lie in the interior of the Mandelbrot set. Significant progress in the

understanding of the structure of this set, as well as of the Julia sets

of quadratic polynomials, has been obtained in the works of Yoccoz,

McMullen, Lyubich, Graczyk-Swiatek and others.

The mathematical tools that we will discuss in this book have been

also very important in the study of the dynamics of circle and interval

maps that are real analytic or even smooth; see [MS], [dFM2], [dFM1],

and also [dFMP]. In this case the phase space reduces to a compact

interval of the real line or to the circle, but the parameter space becomes
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Introduction 5

an infinite-dimensional Banach space. Holomorphic methods still play

an important role in the understanding of the small-scale structure of

the orbits of smooth maps.

We conclude this introduction by mentioning some fundamental open

problems. The most well-known, the so-called Fatou conjecture, states

that for a structurally stable map each critical point is in the basin of an

attracting periodic point. This is a very difficult problem, which is still

open even for the quadratic family. For a long time it was conjectured

that the Julia set of a rational map would either be the whole Riemann

sphere or would have Lebesgue measure zero; in particular, the Julia

set of every polynomial would have measure zero. This was recently

disproved by X. Buff and A. Cheritat [BuC], who found Julia sets of

positive Lebesgue measure in the quadratic family, a truly outstanding

achievement. By M. Rees’ theorem, the bifurcation set of the family

of rational maps of degree d has positive Lebesgue measure. However,

it is expected that the bifurcation set of the family of polynomials of

degree d should have zero Lebesgue measure. For the quadratic family,

an important conjecture formulated by Douady and Hubbard is that

the Mandelbrot set is locally connected. They proved in [DH2] that this

conjecture implies Fatou’s conjecture for the quadratic family. Finally,

a very important open question concerns the regularity of the conjugacy

between two rational maps. It is conjectured that if two rational maps

are topologically conjugate then a conjugacy exists between them that is

quasiconformal. A solution to this conjecture in the special case of real

quadratic polynomials, which implies the solution of Fatou’s problem,

was obtained in [L4] and in [GS1] and uses all the tools that we discuss

in this book and more.
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Preliminaries in complex analysis

Complex analysis is a vast and very beautiful subject, and the key to its

beauty is the harmonious coexistence of analysis, algebra, geometry and

topology in its most fundamental entity, the complex plane. We will

assume that the reader is already familiar with the basic facts about

analytic functions in one complex variable, such as Cauchy’s theorem,

the Cauchy–Riemann equations, power series expansions, residues and

so on. Holomorphic functions in one complex variable enjoy a double

life, as they can be viewed both as analytic objects (power series, integral

representations) and as geometric objects (conformal mappings). The

topics presented in this book exploit freely this dual character of holom-

orphic functions. Our purpose in this short chapter is to present some

well-known or not so well-known analytic and geometric facts that will

be necessary later. The reader is warned that what follows is only a brief

collection of facts to be used, not a systematic exposition of the theory.

For general background reading in complex analysis, see for instance

[A2], [An] or [Rud].

2.1 Analytic facts

Let us start with some differential calculus of complex-valued functions

defined on some domain in the complex plane (by a domain we mean

as usual a non-empty, connected, open set). The two basic differential

operators of complex calculus are

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

;
∂

∂z
=

1

2

(

∂

∂x
+ i

∂

∂y

)

,
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2.1 Analytic facts 7

so that, if f : Ω → C (Ω ⊆ C being a domain) is a C1 function, then its

total derivative is

df =
∂f

∂x
dx +

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z
dz ,

where dz = dx+ i dy and dz = dx− i dy. We often simplify the notation

even further, writing ∂f = ∂f/∂z and ∂f = ∂f/∂z respectively. Thus,

a C1 function is analytic, or holomorphic, if ∂f(z) = 0 for all z ∈ Ω. In

this case the limit

f ÿ(z) = lim
h³0

f(z + h) − f(z)

h

exists and equals ∂f(z) for all z ∈ Ω (it is the complex derivative of f

at z).

Several basic facts from standard calculus can be restated in complex

notation. Thus, we can write Green’s formula in the following way. If

u, v : Ω → C are C1 functions and V ⊆ Ω is a simply connected domain

bounded by a piecewise C1 Jordan curve (the boundary ∂V ), then
∫

∂V

u dz + v dz =

∫∫

V

(

∂v − ∂u
)

dz ∧ dz ; (2.1)

here dz ∧ dz = (dx + i dy) ∧ (dx − i dy) = −2i dx ∧ dy is the complex

area form.

With the help of Green’s formula, it is not difficult to check that if

f : Ω → C is a C1 function and D is an open disk with D ⊆ Ω then for

all z ∈ D we have

f(z) =
1

2πi

∫

∂D

f(ζ)

ζ − z
dζ +

1

2πi

∫∫

D

∂f(ζ)

ζ − z
dζ ∧ dζ . (2.2)

This is known as the Cauchy–Green or Pompeiu formula Note that if f

is analytic then the second integral vanishes identically and we recover

the usual Cauchy formula of basic complex analysis.

We can still make sense out of the preceding formulas even if the

functions involved are not C1. Indeed, we can think of ∂f or ∂f as

distributions. The most useful situation occurs when the distributional

derivatives ∂f, ∂f of a given f : Ω → C are represented by locally

integrable functions fz, fz : Ω → C. In this case, for all test functions

ϕ ∈ C>

0 (Ω) (complex-valued C> functions with compact support) we

have
∫∫

Ω

fz(ζ)ϕ(ζ) dζ ∧ dζ = −

∫∫

Ω

f(ζ)∂ϕ(ζ) dζ ∧ dζ ,
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8 Preliminaries in complex analysis

as well as
∫∫

Ω

fz(ζ)ϕ(ζ) dζ ∧ dζ = −

∫∫

Ω

f(ζ)∂ϕ(ζ) dζ ∧ dζ.

When working with the distributional derivatives of a given f , as above,

we often need to approximate f in a suitable sense by a sequence of

smooth functions usually referred to as a smoothing sequence. Such an

approximation is obtained by performing the convolution of f with an

approximate identity , a sequence of C∞ functions φn : C → C with

compact support having the following properties:

(1)

∫∫

C

|φn(z)| dxdy = 1

(2) suppφn ⊂ D(0, 1/n).

The standard example of an approximate identity is constructed as fol-

lows. Let ϕ : C → R be the C∞ function which is given by

ϕ(z) = exp

(
−

1

1 − |z|2

)

for all z ∈ D and which vanishes identically outside D. Let φ : C → R be

defined by φ(z) = ϕ(z)/
∫∫

C
|ϕ(z)| dxdy, and then take φn(z) = n2φ(nz)

for each n ≥ 1. Now we have the following important fact.

Lemma 2.1.1 Let f : Ω → C be a continuous function whose distribu-

tional derivatives fz, fz are such that |fz|
p and |fz|

p are locally integrable

on Ω, for some fixed p ≥ 1. Then for each compact set K ⊂ Ω there

exists a sequence fn ∈ C∞

0 (Ω) such that fn converges uniformly to f on

K as n → ∞ and such that

lim
n→∞

∫∫

K

|∂fn(z) − fz(z)|p dxdy = 0

as well as

lim
n→∞

∫∫

K

|∂fn(z) − fz(z)|p dxdy = 0 .

Such a sequence is called an Lp smoothing sequence for f in K.

Proof Consider a fixed λK ∈ C∞

0 (Ω) that is constant and equal to 1 on

some neighborhood of K, and form the function fK = λKf , which has

compact support in K; extend fK outside Ω, setting it equal to zero.
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2.1 Analytic facts 9

Note that the distributional partial derivatives of fK are locally in Lp;

in fact

∂fK = ∂λK f + λK ∂f , ∂fK = ∂λK f + λK ∂f .

Let {φn}n≥1 be an approximate identity (say the one we constructed

before lemma 2.1.1), and let fn ∈ C∞
0 (Ω) be given by

fn(z) = φn ∗ fK(z) = −
1

2i

∫∫

C

φn(z − ζ)fK(ζ) dζ ∧ dζ .

Then we have also

∂fn = φn ∗ ∂fK , ∂fn = φn ∗ ∂fK .

It now follows from standard properties of convolutions that fn → fK

uniformly in K and that ∂fn → ∂fK and ∂fn → ∂fK in Lp(K). This

is the desired result, because for all z ∈ K we have fK(z) = f(z),

∂fK(z) = fz(z) and ∂fK(z) = fz(z).

This lemma yields two key results. The first is a fundamental lemma

due to H. Weyl, which is a special case of a much more general regularity

theorem for elliptic operators.

Proposition 2.1.2 (Weyl’s lemma) If f : Ω → C is a continuous

function such that ∂f = 0 in Ω in the sense of distributions then f is

holomorphic in Ω.

Proof Take any disk D whose closure is contained in Ω. Let fn : Ω → C

be an L1 smoothing sequence for f in D. Then fn converges uniformly

to f in D. From the fact that ∂f = 0 in the distributional sense, it

follows that ∂fn(z) = 0 for all z ∈ D. Since fn is C1, it follows that

fn is holomorphic for each n. Therefore f , being the uniform limit of

holomorphic functions, is holomorphic in D. Since D ⊂ Ω is arbitrary,

f is holomorphic in Ω.

The second result that we prove with the help of lemma 2.1.1 is the

following more general version of (2.2).

Proposition 2.1.3 (Pompeiu’s formula) Let f : Ω → C be a contin-

uous function whose distributional derivatives ∂f, ∂f are represented by

functions fz, fz locally in Lp for some fixed p with 2 < p < ∞. Then for

each open disk D compactly contained in Ω and each z ∈ D we have

f(z) =
1

2πi

∫

∂D

f(ζ)

ζ − z
dζ +

1

2πi

∫∫

D

fz(ζ)

ζ − z
dζ ∧ dζ . (2.3)
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10 Preliminaries in complex analysis

Proof Note that the last integral is absolutely convergent because fz ∈

Lp(D) and 1/(ζ − z) ∈ Lq(D), where q < 2 is the conjugate exponent

of p (that is, p21 + q21 = 1). Let fn ∈ C>
0 (Ω) be an Lp smoothing

sequence for f in D. By (2.2), for each n we have

fn(z) =
1

2πi

∫

∂D

fn(ζ)

ζ − z
dζ +

1

2πi

∫∫

D

∂fn(ζ)

ζ − z
dζ ∧ dζ .

Since fn → f uniformly in D, whereas ∂fn → fz in Lp(D), we deduce

(say by the dominated convergence theorem) that (2.3) holds.

2.2 Geometric inequalities

The theory of conformal mappings is extremely rich in inequalities hav-

ing a geometric content.

2.2.1 The classical Schwarz lemma

The most fundamental inequality in complex function theory is the clas-

sical Schwarz lemma, which we now recall. It states that every holomor-

phic self-map of the unit disk that fixes the origin is either a contraction

near the origin or else it is a rotation. The precise statement is the

following.

Lemma 2.2.1 (Schwarz) Let f : D → D be a holomorphic map such

that f(0) = 0, and let λ = f ÿ(0). Then either |λ| < 1, in which case

|f(z)| < |z| for all z, or else |λ| = 1, in which case f(z) = λz for all z.

Proof Let ϕ : D → D be given by

ϕ(z) =

ù

ü

ü

ú

ü

ü

û

f(z)

z
if z ∈ D \ {0} ,

f ÿ(0) if z = 0 .

By Riemann’s removable singularity theorem, ϕ is holomorphic. Hence,

for all z ∈ D and all r such that |z| ≤ r < 1 we have, by the maximum

principle,

|ϕ(z)| ≤ sup
|ζ|=r

ÿ

ÿ

ÿ

ÿ

f(ζ)

ζ

ÿ

ÿ

ÿ

ÿ

≤
1

r
.

Letting r → 1, we deduce that |ϕ(z)| ≤ 1, i.e. |f(z)| ≤ |z|, for all z ∈ D.

If equality holds for some z then, again by the maximum principle, ϕ
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