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Preface

‘The Romans,’ Roger and the Reverend Dr. Paul de la Nuit were drunk
together one night, or the vicar was, ‘the ancient Roman priests laid a
sieve in the road, and then waited to see which stalks of grass would
come up through the holes.’

Thomas Pynchon, ‘Gravity’s Rainbow’

These notes arose, by the long and convoluted process that research often turns
out to be, from a supposedly short addition to my paper [80]. This is a story
that is certainly typical of much of scientific research, and since I always find
this fascinating, and hardly visible from the outside once a paper or book is
published,1 I will summarize the events briefly. Readers who like science rather
dry or dour may wish to start reading Chapter 1.

The original ambition was simply to extend the large sieve bound for
Frobenius conjugacy classes of this first paper to the stronger form classic-
ally due to Montgomery, which would mean that ‘small sieve’ applications
would become possible. The possibility of this extension seemed clear to me,
as well as the relative paucity of new applications.2 At the same time, it seemed
natural to ‘axiomatize’ the setting in a way allowing an identical treatment of
the classical large sieve inequality and this newer variant, and this seemed a
worthwhile enough goal.

All this should not have taken very long, either in time or space, except that
inevitable delays due to teaching and other duties led to the thought that maybe
other applications of this abstract form of sieve would be possible, and could be

1 A striking recent instance of this process is described by A. Wiles in the introduction to his paper
proving Fermat’s Great Theorem.

2 In large sieve situations, applying the best small sieve bound gives very small gains, whereas
small sieve cases, by definition, can be handled by small sieves, which were already sufficiently
general to handle the ‘obvious’ applications, and in fact strong enough to prove lower bounds in
some contexts.

xi
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xii Preface

briefly discussed in the course of the paper, which would thus become stronger.
A natural fit, given my background and the emphasis on random matrices as an
interpretation of the results of [80], was to think of trying to prove, e.g., that a
‘generic’ unimodular integral n × n matrix has irreducible characteristic poly-
nomial (or maximal splitting field), as an application of the large sieve applied
to SL(n, Z). I started thinking about this problem, seeing clearly that harmonic
analysis of automorphic forms on SL(n, Z)\SL(n, R) would be called for, and
that this would require some learning on my part for n � 3. Clearly this would
be material for another paper, a quite interesting one since I knew of no previ-
ous use of sieve in such situations. Because of the strong link to spectral theory
of automorphic forms, I was pretty sure I would have heard of it if published
papers on this topic existed; as it was, there were results of Duke, Rudnick and
Sarnak [33] (and their later extensions) giving asymptotic formulas for the num-
ber of unimodular matrices with bounded norm, but not for the more general
‘exponential sums’ arising from the sieve theory.

In the meantime, D. Zywina sent me his preprint (‘The large sieve and Galois
representations’, 2007) which contained a slightly different formulation of an
abstract form of the large sieve, with applications to distribution of Frobenius
elements in number fields, specifically to the Lang–Trotter Conjecture. His
sieve axioms were in many respects more general than mine, except for one
condition which I had to introduce in [80] because of specific features of the
arithmetic of varieties over finite fields (the difference between arithmetic and
geometric fundamental groups). Still, where his conditions were more general,
I could in fact very easily assume the same generality, and reading his preprint
led me to rewrite mine in this light. This did not bring new applications. On the
other hand, as I was reading (mostly for the pleasure of it) the nice book by P. de
la Harpe on geometric group theory [57], I thought that one could also try to use
as targets of sieves the subsets of groups defined by word length (with respect
to some system of generators) being smaller than some quantity. However, not
knowing much about this topic, this was mostly speculative.

But around the same time, I. Rivin posted a preprint [108] on arXiv (www.
arXiv.org) which directly mentioned the problem of irreducibility of char-
acteristic polynomials of unimodular matrices. He also mentioned the results
of Duke, Rudnick and Sarnak but did not prove that ‘most’ matrices have this
property. What he managed to prove was an analogue of the more combinat-
orial variant: instead of looking at balls in the word-length metric, rather he
was looking at random walks on the group of length k → +∞. His method
for detecting irreducibility was similar to the ‘old’ method used by van der
Waerden for integral polynomials with bounded height, combined with res-
ults of Chavdarov [22] (which already played a role in [80], one of the results
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Preface xiii

of which was indeed a strong quantitative strengthening of Chavdarov’s main
result, following Gallagher’s large sieve strengthening [46] of van der Waer-
den’s result), and in particular the statement proved was qualitative and did
not give explicit bounds for the probability of having a reducible characteristic
polynomial.

A remarkable novel feature of Rivin’s work was the new applications he
discussed, which concerned ‘generic’ properties of automorphisms either of
compact connected surfaces or free groups. In each case, the action of such
elements on a free abelian group (the homology of the surface or abelianization
of the free group, respectively) was sufficient to detect an interesting condition
by looking at the corresponding characteristic polynomial. Rivin thus proved
in a very simple way a (special case of a) result of Maher [96]: the probability
that the k-th step of a random walk on the mapping class group of a surface of
genus g is pseudo-Anosov tends to 1 as k → +∞.

As I mentioned to Rivin that I had been working with the large sieve with
applications to characteristic polynomials in mind, he told me that Bourgain,
Gamburd and Sarnak were investigating issues related to sieve in arithmetic
groups and forwarded their preprint [14]. This work was, in small sieve con-
texts, concerned with showing that orbits of certain subgroups G of arithmetic
groups acting on Zn contain infinitely many points with prime (or almost prime)
coordinates. What was clearly explained was that, apart from fairly standard
sieve machinery going back to Brun or Selberg, the crucial feature that must
be exploited (and proved) is the expanding property of congruence quotients of
the group G.

As I became aware of these very interesting developments, my paper
remained unchanged. Or rather, what was expanding in it was a ‘sidebar’ hav-
ing to do with natural questions suggested by the sieve framework: what is the
largest dimension of an irreducible representation of a finite group of Lie type,
such as SL(n, Z/�Z) or Sp(2g, Z/�Z), and what is the sum of those dimen-
sions? This had already puzzled me while writing [80], where I used ‘trivial’
bounds for those quantities. As I tried once more to get some understanding of
the theory of Deligne–Lusztig characters which describes the representations
of such groups, I finally wrote to F. Digne and J. Michel, with the feeling that
this must certainly be known, but hidden somewhere inaccessible to ‘simple’
searches in Mathematical Reviews. However, J. Michel did not know if the
first question had been considered (he pointed out the papers of Gow [50] and
Vinroot [129] concerning the second problem). Based on his indications, I man-
aged to write down a proof of the estimate which I had found ‘reasonable’ to
expect.
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xiv Preface

Finally summer vacation came. Then, in a short time, I found and wrote
down a new amusing application of the sieve to the study of denominators of
rational points on elliptic curves, which was a good example of the ‘abstract’
framework. More importantly, Rivin’s use of random walks prompted me to
generalize the sieve context to that of estimating the measure of some ‘sifted
set’, and not necessarily its cardinality, in order to incorporate applications
having to do with general random walks. And using Property (τ ) for discrete
groups together with some nice probabilistic ideas described in the survey on
random walks on groups by L. Saloff-Coste [111], I obtained an effective form
of Rivin’s irreducibility theorem for random walks on SL(n, Z) or Sp(2g, Z).

At this point, I felt that I merely needed to polish a few things and then
send the paper to a well-chosen journal. I was wondering if splitting it into
multiple parts might not be better (something I usually strongly dislike), since
its growing mathematical spread, while appealing, obviously made it difficult to
find a single referee: by this time, the crucial insights were from analytic number
theory, the tools ranged from representation theory, including Deligne–Lusztig
theory, to Property (τ ) and the Riemann Hypothesis over finite fields, not to
mention the use of probabilistic vocabulary. And familiarity with [80] was quite
obviously assumed . . .

But then I realized that the very basic formal part of the large sieve was
unduly complicated and framed in the wrong way, bonding the method with
group theory much too early (the title at the time was ‘The algebraic principle of
the large sieve’, a joking pun on [98]). By moving the group theory to a different
part of the argument (the choice of a suitable orthonormal basis for finite-
dimensional Hilbert spaces), the principle of the sieve could be both simplified
and generalized once more. In retrospect, nothing seems more obvious, but
the simpler form had been completely obscured by the force of habit together
with the fact that all applications I knew were linked with a group and its
representation theory.

So I rewrote much of the beginning part and adapted the rest; by this time
the paper was around 55 (full) pages long. After some more hesitation, some
more feature-creep, and taking advice from P. Sarnak and A. Granville, get-
ting this text in a journal seemed less and less practical. Because of the many
applications, I wanted the paper to be accessible to as large an audience as pos-
sible, and the style of the writing appeared to me to become unsuitable for, say,
geometers interested in the stronger form of Maher’s and Rivin’s results (I had
realized, looking at [96] quite late, that my bound for characteristic polynomi-
als of Sp(2g, Z) implied a solution to a further question of Maher, namely the
transience of the set of non-pseudo-Anosov elements during a random walk on
the mapping class group).
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Preface xv

The outcome of this process is that I have expanded the paper to a short book,
adding brief surveys of most of the important material that may not be known
to all readers. This includes the representation theory of finite groups, Property
(τ ) (and Property (T )) – with a sketch of the proof of Property (T ) for SL(n, Z)

due to Shalom [124], sums of multiplicative functions, probability theory and
random walks, and the mapping class groups of surfaces. Of course, for some
of these, I have no claim to expertise and the surveys should only be thought of
as delineating the basic definitions and some basic information which I found
especially interesting (or beautiful!) while learning about the subject.

All this will, I hope, have both the effect of making the text readable for
non-analytic number theorists that may have potential use of ideas related to
the large sieve, and to make analytic number theorists aware of some potential
areas where their ideas might be useful.
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Prerequisites and notation

There are two types of readers for whom this book is written: some who are
knowledgeable about analytic number theory, and maybe very familiar with
sieve methods, and who (we hope) will find the new and unfamiliar applica-
tions of interest; and some who are interested in a specific application (e.g.,
those around properties of mapping class groups, or zeta functions of algebraic
varieties over finite fields, or random walks on discrete groups), but not neces-
sarily in all of them, and who may not be familiar with the principles of analytic
number theory.

Fortunately, there is in fact very little prerequisite for most of the book; the
basic principle of the large sieve uses nothing more than basic linear algebra
and analysis (finite-dimensional Hilbert spaces). When it comes to applica-
tions, where more sophisticated tools are often involved, we follow the policy
of defining from scratch all notions that appear, and provide the reader with pre-
cise references for all facts we use about such topics as elliptic curves, discrete
groups, algebraic groups, random walks and harmonic analysis. The only (par-
tial) exception is in Chapter 8 where we need the machinery of �-adic sheaves
over finite fields, and their cohomology. But even then, the statements of the
applications of the sieve (at least) should be understandable by any reader, and
we hope that the mechanism of the proofs is explained clearly enough that
analytic number theorists will be able to benefit from reading this chapter.

We now summarize the most common notation. Less standard notation will
be explained in each chapter when first used (see in particular the beginning of
Chapter 2), and moreover the appendices contain quick surveys of the definitions
of (almost) all mathematical terms which occur in the book.

As usual, |X| denotes the cardinality of a set; however if X is a measure space
with measure µ, we sometimes write |X| instead of µ(X).

By f � g for x ∈ X, or f = O(g) for x ∈ X, where X is an arbitrary
set on which f is defined, we mean synonymously that there exists a constant

xvii
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xviii Prerequisites and notation

C � 0 such that |f (x)| � Cg(x) for all x ∈ X. The ‘implied constant’ is any
admissible value of C. It may depend on the set X which is always specified
or clear in context. The notation f � g means f � g and g � f . On the other
hand f (x) = o(g(x)) as x → x0 is a topological statement meaning that
f (x)/g(x) → 0 as x → x0. We also use the O() notation in other types of
expressions; the meaning should be clear: e.g., f (x) � g(x) + O(h(x)) for
x ∈ X, means that f � g + h1 in X for some (non-negative) function h1 such
that h1 = O(h). (For instance, x � x2 + O(1) for x � 1, but it is not true that
x − x2 = O(1).)

In this book, any statement of a lemma, proposition, theorem or corollary
will include an explicit mention of which parameters the ‘implied constant’
depends on; any divergence from this principle is an error, and the author should
be made aware of it. The same explicitness will be true for many, but not all, of
the intermediate statements (where sometimes it will be clear enough what the
parameters involved are, from the flow of the argument). This insistence may
look pedantic, but uniformity in parameters is crucial to many applications of
analytic number theory, and this should make the text usable by all mathem-
aticians with confidence that there is no hidden dependency. (Algebraic-minded
readers may note that indicating the dependency of those parameters is some-
what analogous to stating explicitly in which category a morphism between two
objects is defined; the author’s experience is that not having this information
clearly stated even if it is completely obvious for knowledgeable readers can
create a lot of confusion for beginners.)

For a groupG,G� denotes the set of its conjugacy classes, and for a conjugacy-
invariant subset X ⊂ G, X� ⊂ G� is the corresponding set of conjugacy classes.
The conjugacy class of g ∈ G is denoted g�.

For q a power of a prime number, Fq denotes a finite field with q elements.
Unless otherwise specified (as in Chapter 5), p always denotes a prime num-

ber. If n � 1 is an integer, sums or products over divisors of n always mean
divisors d � 1. We use standard arithmetic functions ϕ, ψ , ω and µ,3 defined
as follows for an integer n � 1 in terms of the prime factors of n:

ϕ(n) = n
∏
p|n

(1 − p−1), ψ(n) = n
∏
p|n

(1 + p−1), ω(n) = |{p | p | n}|,

µ(n) =
{

(−1)k if n = p1 · · · pk with p1 < · · · < pk,

0 otherwise,

3 No confusion should arise with measures also denoted µ.
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Prerequisites and notation xix

We denote as (a, b) the greatest common divisor of integers a and b, unless
this creates ambiguity with pairs of integers. Similarly, [a, b] is the least com-
mon multiple. An integer n � 1 is squarefree if it is not divisible by the square
of a prime p, or equivalently if µ(n) �= 0. We use the shorthand notation∑�

m

α(m)

for a sum restricted to squarefree integers m.
We denote by π(x) the prime counting function, i.e., the number of primes

p � x, and by π(x; q, a) the prime counting function in arithmetic progres-
sions, i.e., the number of primes p � x which are congruent to a modulo q. Of
course, π(x; q, a) is bounded if and only if (a, q) �= 1 (by Dirichlet’s theorem
on primes in arithmetic progressions).

We recall some asymptotic formulas of prime number theory, the second of
which is a strong form of the Prime Number Theorem:∑

p�x

1

p
= log log x + O(1), π(x) = x

log x
+ O

( x

(log x)2

)
,

for x � 3.
For z ∈ C, we denote e(z) = exp(2iπz), so that e(·) is a non-trivial homo-

morphism C/Z → C×.
In probabilistic contexts, P(A) is the probability of an event, E(X) is

the expectation of a random variable X, V(X) its variance, and 1A is the
characteristic function of an event A. See Appendix F for the basic definitions.

Let k be a field, and V a k-vector space of even dimension dim V = 2g. If
〈·, ·〉 : V ×V → k is a non-degenerate alternating bilinear form on V , we denote
by Sp(V ), Sp(〈·, ·〉) or more commonly by Sp(2g, k) the symplectic group of
V , namely the group of invertible linear transformations of V preserving this
bilinear form; it is the group of those g ∈ GL(V ) such that

〈gv, gw〉 = 〈v, w〉
for all v, w ∈ V . The notation Sp(2g, k) is justified by the fact that, up to
isomorphism, there is only one non-degenerate alternating bilinear form on V .
If a specific model is needed, one can fix a vector space W of dimension g, and
put V = W ⊕ W ′, where W ′ is the dual of W , and let

〈(v1, �1), (v2, �2)〉 = �1(v2) − �2(v1).

The subspaces W and W ′ are then instances of Lagrangian subspaces, i.e.,
subspaces of maximal dimension g such that the restriction of the alternating
form to the subspace is identically zero. All Lagrangian subspaces of V are
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xx Prerequisites and notation

images of any fixed one (such as W above) by an element of Sp(V ), i.e., Sp(V )

acts transitively on the set of Lagrangian subspaces. If W1, W2 are Lagrangian
subspaces, they are transverse if W1 ∩ W2 = 0, or equivalently if both together
span V .

Moreover, we denote by CSp(V ), CSp(〈·, ·〉) or CSp(2g, k) the group of
symplectic similitudes, i.e., of those g ∈ GL(V ) such that

〈gv, gw〉 = m(g)〈v, w〉

for all v, w ∈ V, where m(g) ∈ k× is a scalar called the multiplicator of g. This
is a surjective group homomorphism, and there is therefore an exact sequence

1 → Sp(V ) → CSp(V )
m−→ k× → 1.

We recall the formulas for the cardinality of GL(n, Fq) and Sp(2g, Fq) for
a finite field Fq with q elements:

|GL(n, Fq)| =
n−1∏
k=0

(qn − qk) = qn(n−1)/2

n∏
k=1

(qk − 1), (0.1)

|Sp(2g, Fq)| = qg2
g∏

k=1

(q2k − 1). (0.2)

When working with matrices g ∈ M(n, A), where A is a commutative ring
with unit, we will consider both the standard characteristic polynomial of g,
namely det(T − g) ∈ A[T ], which is a monic polynomial of degree n tak-
ing value (−1)n det(g) at 0; and the reversed characteristic polynomial det(Id
− T g) ∈ A[T ], where Id is the identity matrix. This is of degree equal to the
rank of g, takes value 1 at 0, and has leading term det(g)T n if g is invertible.
Obviously, whenever invertible matrices are considered, all results on either of
these can be restated in terms of the other, or of det(g − T ): we have

det(Id − gT ) = T n det(T −1 − g).

If we wish to speak of the characteristic polynomial of an endomorphism of
a free A-module V of finite rank, we write det(T −A | V ) or det(Id−T A | V ).

If G is a group, [G, G] is the commutator subgroup, generated by commut-
ators [x, y] = xyx−1y−1 for x, y ∈ G, and the abelian group G/[G, G] is the
abelianization of G.

The symmetric group on n letters is denoted Sn. Moreover, for g � 1, W2g

denotes the group of signed permutations of g pairs (2i − 1, 2i), 1 � i � 2g,
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Prerequisites and notation xxi

i.e., the subgroup of elements σ ∈ S2g such that σ({2i − 1, 2i}) is a pair
{2j, 2j − 1} for all i. This group has order 2gg! and sits in an exact sequence

1 → {±1}g → W2g

p−→ Sg → 1,

where the right-hand map assigns to σ ∈ W2g the permutation of the g pairs
(2i−1, 2i), the natural generators σi of the kernel being the signed permutations
which act as the identity except for σ(2i − 1) = 2i, σ(2i) = 2i − 1.
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