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Galois theory of fields

This first chapter is both a concise introduction to Galois theory and a warmup
for the more advanced theories to follow. We begin with a brisk but reasonably
complete account of the basics, and then move on to discuss Krull’s Galois
theory for infinite extensions. The highlight of the chapter is Grothendieck’s
form of Galois theory that expresses the main theorem as a categorical anti-
equivalence between finite étale algebras and finite sets equipped with a con-
tinuous action of the absolute Galois group. This theorem is a prototype for
many statements of similar shape that we shall encounter later.

1.1 Algebraic field extensions
In this section and the next we review some basic facts from the theory of field
extensions. As most of the material is well covered in standard textbooks on
algebra, we shall omit the proof of a couple of more difficult theorems, referring
to the literature instead.

Definition 1.1.1 Let k be a field. An extension L|k is called algebraic if every
element α of k is a root of some polynomial with coefficients in k. If this
polynomial is monic and irreducible over k, it is called theminimal polynomial
of α.

When L is generated as a k-algebra by the elements α1, . . . , αm ∈ L, we
write L = k(α1, . . . , αm). Of course, one may find many different sets of
such αi .

Definition 1.1.2 A field is algebraically closed if it has no algebraic extensions
other than itself. An algebraic closure of k is an algebraic extension k̄ that is
algebraically closed.

The existence of an algebraic closure can only be proven by means of Zorn’s
lemma or some other equivalent form of the axiom of choice.We record it in the
following proposition, along with some important properties of the algebraic
closure.
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2 Galois theory of fields

Proposition 1.1.3 Let k be a field.

1. There exists an algebraic closure k̄ of k. It is unique up to (non-unique)
isomorphism.

2. For an algebraic extension L of k there exists an embedding L → k̄

leaving k elementwise fixed.
3. In the previous situation take an algebraic closure L of L. Then the

embedding L → k̄ can be extended to an isomorphism of L onto k̄.

For the proof, see Lang [48], Chapter V, Corollary 2.6 and Theorem 2.8, or
van der Waerden [106], §72.
Thus henceforth when speaking of algebraic extensions of k we may (and

often shall) assume that they are embedded in a fixed algebraic closure k̄.

Facts 1.1.4 A finite extension L of k is algebraic. Its degree over k, denoted
by [L : k], is its dimension as a k-vector space. If L is generated over k by
a single element with minimal polynomial f , then [L : k] is equal to the
degree of f . For a tower of finite extensions M|L|k one has the formula
[M : k] = [M : L][L : k]. All this is proven by easy computation.

Definition 1.1.5 A polynomial f ∈ k[x] is separable if it has no multiple roots
(in some algebraic closure of k). An element of an algebraic extension L|k is
separable over k if its minimal polynomial is separable; the extensionL|k itself
is called separable if all of its elements are separable over k.

Separability is automatic in characteristic 0, because a well-known criterion
implies that an irreducible polynomial has no multiple roots if and only if its
derivative f ′ is nonzero (see [106], §44). However, the derivative can be zero
in characteristic p > 0, e.g. for a polynomial xp − a, which is irreducible for
a ∈ k× \ k×p.
In the case of finite extensions there is the following important characteriza-

tion of separability.

Lemma 1.1.6 Let L|k be a finite extension of degree n. Then L has at most
n distinct k-algebra homomorphisms to k̄, with equality if and only if L|k is
separable.

Proof Choose finitely many elements α1, . . . , αm that generate L over k.
Assume first m = 1, and write f for the minimal polynomial of α1 over k. A
k-homomorphism L → k̄ is determined by the image of α1, which must be
one of the roots of f contained in k̄. The number of distinct roots is at most n,
with equality if and only if α is separable. From this we obtain by induction on
m using the multiplicativity of the degree in a tower of finite field extensions
that L has at most n distinct k-algebra homomorphisms to k̄, with equality if
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1.1 Algebraic field extensions 3

the αi are separable. To prove the ‘only if’ part of the lemma, assume α ∈ L

is not separable over k. Then by the above the number of k-homomorphisms
k(α) → k̄ is strictly less than [k(α) : k], and that of k(α)-homomorphisms from
L to k̄ is at most [L : k(α)]. Thus there are strictly less than n k-homomorphisms
from L to k̄. �

The criterion of the lemma immediately implies:

Corollary 1.1.7 Given a tower L|M|k of finite field extensions, the extension
L|k is separable if and only if L|M and M|k are.
In the course of the proof we have also obtained:

Corollary 1.1.8 A finite extension L|k is separable if and only if L =
k(α1, . . . , αm) for some separable elements αi ∈ L.

We now show that there is a largest separable subextension inside a fixed
algebraic closure k̄ of k. For this recall that given two algebraic extensions
L, M of k embedded as subfields in k̄, their compositum LM is the smallest
subfield of k̄ containing both L and M .

Corollary 1.1.9 If L,M are finite separable extensions of k, their compositum
is separable as well.

Proof By definition of LM there exist finitely many separable elements
α1, . . . , αm of L such that LM = M(α1, . . . , αm). As the αi are separable
over k, they are separable over M , and so the extension LM|M is separable
by the previous corollary. But so is M|k by assumption, and we conclude by
Corollary 1.1.7. �

In view of the above two corollaries the compositum of all finite separable
subextensions of k̄ is a separable extension ks |k containing each finite separable
subextension of k̄|k.
Definition 1.1.10 The extension ks is called the separable closure of k in k̄.

From now on by ‘a separable closure of k’ we shall mean its separable
closure in some chosen algebraic closure.
The following important property of finite separable extensions is usually

referred to as the theorem of the primitive element.

Proposition 1.1.11 A finite separable extension can be generated by a single
element.

For the proof, see Lang [48], Chapter V, Theorem 4.6 or van der Waerden
[106], §46.
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4 Galois theory of fields

A field is called perfect if all of its finite extensions are separable. By
definition, for perfect fields the algebraic and separable closures coincide.

Examples 1.1.12

1. Fields of characteristic 0 and algebraically closed fields are perfect.
2. A typical example of a non-perfect field is a rational function field F(t) in

one variable over a field F of characteristic p: here adjoining a p-th root
ξ of the indeterminate t defines an inseparable extension in view of the
decomposition Xp − t = (X − ξ )p.
This is a special case of a general fact: a field k of characteristic p > 0

is perfect if and only if kp = k ([48], Chapter V, Corollary 6.12 or [106],
§45). The criterion is satisfied by a finite field Fpr as its multiplicative
group is cyclic of order pr − 1; hence finite fields are perfect.

1.2 Galois extensions
Nowwecome to the fundamental definition inGalois theory.Given an extension
L of k, denote by Aut(L|k) the group of field automorphisms of L fixing k

elementwise. The elements of L that are fixed by the action of Aut(L|k) form
a field extension of k. In general it may be larger than k.

Definition 1.2.1 An algebraic extension L of k is called a Galois extension of
k if the elements ofL that remain fixed under the action of Aut(L|k) are exactly
those of k. In this case Aut(L|k) is denoted by Gal (L|k), and called the Galois
group of L over k.

Though the above definition is classical (it goes back to Emil Artin), it may
not sound familiar to some readers. We shall now make the link with other
definitions. The first step is:

Lemma1.2.2 AGalois extensionL|k is separable, and theminimal polynomial
over k of each α ∈ L splits into linear factors in L.

Proof Each element α ∈ L is a root of the polynomial f = ∏
(x − σ (α)),

where σ runs over a system of (left) coset representatives of the stabilizer of α

in G = Gal (L|k). The product is indeed finite, because the σ (α) must be roots
of the the minimal polynomial g of α. In fact, we must have f = g. Indeed,
both polynomials lie in k[x] and have α as a root, hence each σ (α) must be a
root of both. Thus f divides g but g is irreducible. Finally, by construction f

has no multiple roots, thus α is separable over k. �

The converse also holds. Before proving it, we consider the ‘most important’
example of a Galois extension.
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1.2 Galois extensions 5

Example 1.2.3 A separable closure ks of a field k is always a Galois extension.
Indeed, to check that it is Galois we have to show that each element α of ks not
contained in k is moved by an appropriate automorphism in Aut(ks |k). For this
let α′ ∈ ks be another root of the minimal polynomial of α, and consider the
isomorphism of field extensions k(α)

∼→ k(α′) obtained by sending α to α′. An
application of the third part of Proposition 1.1.3 shows that this isomorphism
can be extended to an automorphism of the algebraic closure k̄. To conclude
one only has to remark that each automorphism of Aut(k̄|k) maps ks onto itself,
since such an automorphism sends an element β of k̄ to another root β ′ of its
minimal polynomial; thus if β is separable, then so is β ′.
The group Gal (ks |k) is called the absolute Galois group of k.

We can now state and prove the following important characterization of
Galois extensions.

Proposition 1.2.4 Let k be a field, ks a separable closure andL ⊂ ks a subfield
containing k. The following properties are equivalent.

1. The extension L|k is Galois.
2. The minimal polynomial over k of each α ∈ L splits into linear factors

in L.
3. Each automorphism σ ∈ Gal (ks |k) satisfies σ (L) ⊂ L.

Proof The proof of (1) ⇒ (2) was given in Lemma 1.2.2 above. The implica-
tion (2) ⇒ (3) follows from the fact that each σ ∈ Gal (ks |k) must map α ∈ L

to a root of its minimal polynomial. Finally, for (3) ⇒ (1) pick α ∈ L \ k. As
ks is Galois over k (Example 1.2.3), we find σ ∈ Gal (ks |k) with σ (α) �= α. By
(3), this σ preserves L, so its restriction to L yields an element of Aut(L|k)
which does not fix α. �

Using the proposition it is easy to prove the main results of Galois theory for
finite Galois extensions.

Theorem 1.2.5 (Main Theorem of Galois theory for finite extensions) Let
L|k be a finite Galois extension with Galois group G. The maps

M 	→ H := Aut(L|M) and H 	→ M := LH

yield an inclusion-reversing bijection between subfields L ⊃ M ⊃ k and sub-
groups H ⊂ G. The extension L|M is always Galois. The extension M|k is
Galois if and only if H is a normal subgroup of G; in this case we have
Gal (M|k) ∼= G/H .

In the above statement the notation LH means, as usual, the subfield of L

fixed by H elementwise.
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6 Galois theory of fields

Proof Let M be a subfield of L containing k. Fixing a separable closure
ks |k containing L, we see from Proposition 1.2.4 (3) that L|k being Galois
automatically implies that L|M is Galois as well. WritingH = Gal (L|M), we
therefore have LH = M . Conversely, if H ⊂ G, then L is Galois over LH by
definition, and the Galois group is H . Now only the last statement remains to
be proven. IfH ⊂ G is normal, we have a natural action ofG/H onM = LH ,
since the action of g ∈ G on an element of LH only depends on its class
moduloH . As L|k is Galois, we haveMG/H = LG = k, soM|k is Galois with
group G/H . Conversely, if M|k is Galois, then each automorphism σ ∈ G

preserves M (extend σ to an automorphism of ks using Proposition 1.1.3 (3),
and then apply Proposition 1.2.4 (3)). Restriction to M thus induces a natural
homomorphism G → Gal (M|k) whose kernel is exactlyH = Gal (M|k). It
follows that H is normal in G. �

Classically Galois extensions arise as splitting fields of separable polynomi-
als. Given an irreducible separable polynomial f ∈ k[x], its splitting field is
defined as the finite subextension L|k of ks |k generated by all roots of f in ks .
This notion depends on the choice of the separable closure ks .

Lemma 1.2.6 A finite extension L|k is Galois if and only if it is the splitting
field of an irreducible separable polynomial f ∈ k[x].

Proof The splitting field of an irreducible separable polynomial is indeed
Galois, as it satisfies criterion (3) of Proposition 1.2.4. Conversely, part (2) of
the proposition implies that a finite Galois extension L|k is the splitting field
of a primitive element generating L over k. �

Corollary 1.2.7 A finite extension L|k is Galois with group G = Aut(L|k) if
and only if G has order [L : k].

Proof If L|k is Galois, it is the splitting field of a polynomial by the proposi-
tion, soG has order [L : k] by construction. Conversely, forG = Aut(L|k) the
extension L|LG is Galois by definition, so G has order [L : LG] by what we
have just proven. This forces LG = k. �

Remark 1.2.8 An important observation concerning the splitting field L of a
polynomial f ∈ k[x] is that by definition Gal (L|k) acts on L by permuting
the roots of f . Thus if f has degree n, we obtain an injective homomorphism
from Gal (L|k) to Sn, the symmetric group on n letters. This implies in par-
ticular that L|k has degree at most n!. The bound is sharp; see for instance
Example 1.2.9 (3) below.

In the remainder of this section we give examples of Galois and non-Galois
extensions.
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1.2 Galois extensions 7

Examples 1.2.9

1. Letm > 2 be an integer andω a primitivem-th root of unity. The extension
Q(ω)|Q is Galois, being the splitting field of the minimal polynomial of
ω, the m-th cyclotomic polynomial �m. Indeed, all other roots of �m are
powers of ω, and hence are contained inQ(ω). The degree of�m is φ(m),
where φ denotes the Euler function. The Galois group is isomorphic to
(Z/mZ)×, the group of units in the ring Z/mZ. Whenm is a prime power,
it is known to be cyclic.

2. For an example of infinite degree, let Q(µ)|Q be the extension obtained
by adjoining all roots of unity to Q (in the standard algebraic closure Q
contained in C). Every automorphism in Gal (Q|Q) must send Q(µ) onto
itself, because it must send an m-th root of unity to another m-th root of
unity. Thus by criterion (3) of Proposition 1.2.4 we indeed get a Galois
extension. We shall determine its Galois group in the next section.
By the same argument we obtain that for a prime number p the field

Q(µp∞ ) generated by the p-power roots of unity is Galois over Q.
3. Let k be a field containing a primitive m-th root of unity ω for an integer

m > 1 invertible in k (this means that the polynomial xm − 1 splits into
linear factors over k). Pick an element a ∈ k× \ k×m, and let m

√
a be a root

of it in an algebraic closure k̄. The extension k( m
√

a)|k is Galois with group
Z/mZ, generated by the automorphism σ : m

√
a → ω m

√
a. This is because

all roots of xm − a are of the form ωi n
√

a for some 0 ≤ i ≤ m − 1.
4. When k does not contain a primitive m-th root of unity, we may not get a

Galois extension. For instance, take k = Q,m = 3 and a ∈ Q× \Q×3. We
define 3

√
a to be the unique real cube root of a. The extension Q( 3

√
a)|Q

is nontrivial because 3
√

a /∈ Q, but Aut(Q( 3
√

a)|Q) is trivial. Indeed, an
automorphism in Aut(Q( 3

√
a)|Q) must send 3

√
a to a root of x3 − a in

Q( 3
√

a), but 3
√

a is the only one, since Q( 3
√

a) ⊂ R and the other two
roots are complex. Thus the extension Aut(Q( 3

√
a)|Q) is not Galois. The

splitting field L of x3 − a is generated overQ by 3
√

a and a primitive third
root of unity ω that has degree 2 over Q, so L has degree 6 over Q.

5. Finally, here is an example of a finite Galois extension in positive char-
acteristic. Let k be of characteristic p > 0, and let a ∈ k be an element
so that the polynomial f = xp − x − a has no roots in k. (As a concrete
example, one may take k to be the field Fp(t) of rational functions with
modp coefficients and a = t .) Observe that if α is a root in some extension
L|k, then the other roots are α + 1, α + 2, . . . , α + (p − 1), and therefore
f splits in distinct linear factors in L. It follows that f is irreducible over
k, and that the extension k(α)|k is Galois with group Z/pZ, a generator
sending α to α + 1.
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8 Galois theory of fields

Remark 1.2.10 There exist converse statements to Examples 3 and 5 above.
The main theorem of Kummer theory says that for a field k containing a
primitivem-th root of unity every cyclic Galois extension with group Z/mZ is
generated by anm-th root m

√
a for some a ∈ k× \ k×m. This further generalizes

to Galois extensions with a finite abelian Galois group of exponentm: they can
be generated by several m-th roots.
According to Artin-Schreier theory, in characteristic p > 0 every cyclic

Galois extension with group Z/pZ is generated by a root of an ‘Artin–Schreier
polynomial’ xp − x − a as above. There are generalizations to extensions with
a finite abelian Galois group of exponent p, but also to extensions with group
Z/prZ; the latter uses the theory of Witt vectors. For details and proofs of the
above statements, see e.g. [48], Chapter VI, §8.

Our final example gives an application of the above ideas outside the scope
of Galois theory in the narrow sense.

Example 1.2.11 Let k be a field, and K = k(x1, . . . , xn) a purely transcen-
dental extension in n indeterminates. Make the symmetric group Sn act on K

via permuting the xi . By definition the extension K|KSn is Galois with group
Sn. It is the splitting field of the polynomial f = (x − x1) . . . (x − xn). As f is
invariant by the action of Sn, its coefficients lie in KSn . These coefficients are
(up to a sign) the elementary symmetric polynomials

σ1 = x1 + x2 · · · + xn,

σ2 = x1x2 + x1x3 + · · · + xn−1xn,
...

σn = x1x2 · · · xn.

But by definition K is also the splitting field of f over the field k(σ1, . . . , σn).
As k(σ1, . . . , σn) ⊂ KSn and [K : KSn] = n!, Remark 1.2.8 shows that KSn =
k(σ1, . . . , σn).
With a little commutative algebra one can say more. The xi , being roots

of f , are in fact integral over the subring k[σ1, . . . , σn] ⊂ k(σ1, . . . , σn)
(see Section 4.1 for basic facts and terminology). Therefore the subring
k[x1, . . . , xn]Sn = k[x1, . . . , xn] ∩ KSn of k[x1, . . . , xn] is an integral ring
extension of k[σ1, . . . , σn]. But asK ⊃ k(σ1, . . . , σn) is a finite extension con-
taining n algebraically independent elements, the σi must be algebraically
independent over k. Thus k[σ1, . . . , σn] is isomorphic to a polynomial ring;
in particular, it is integrally closed in its fraction field KSn . It follows that
k[x1, . . . , xn]Sn = k[σ1, . . . , σn]. This is the main theorem of symmetric poly-
nomials: every symmetric polynomial in n variables over k is a polynomial in
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1.3 Infinite Galois extensions 9

the σi . For more traditional proofs, see [48], Chapter IV, Theorem 6.1 or [106],
§33.

Remark 1.2.12 The above example also shows that each finite groupG occurs
as the Galois group of some Galois extension. Indeed, we may embed G

in a symmetric group Sn for suitable n and then consider its action on the
transcendental extension K|k of the above example. The extension K|KG will
then do. However, we shall see in the next section that the analogous statement
is false for most infinite G.

1.3 Infinite Galois extensions
We now address the problem of extending the main theorem of Galois theory to
infinite Galois extensions. The main difficulty is that for an infinite extension
it will no longer be true that all subgroups of the Galois group arise as the
subgroup fixing some subextension M|k. The first example of a subgroup
that does not correspond to some subextension was found by Dedekind, who,
according to Wolfgang Krull, already had the feeling that ‘die Galoissche
Gruppe gewissermaßen eine stetige Mannigfaltigkeit bilde’. It was Krull who
then cleared up the question in his classic paper [47]; we now describe amodern
version of his theory.
LetK|k be a possibly infinite Galois extension. The first step is the observa-

tion that K is a union of finite Galois extensions of k. More precisely:

Lemma 1.3.1 Each finite subextension of K|k can be embedded in a Galois
subextension.

Proof By the theorem of the primitive element (Proposition 1.1.11), each
finite subextension is of the form k(α) with an appropriate element α. We may
embed k(α) into the splitting field of the minimal polynomial of α which is
Galois over k. �

This fact has a crucial consequence for the Galois group Gal (K|k), namely
that it is determined by its finite quotients. We shall prove this in Proposition
1.3.5 below, in a more precise form. To motivate its formulation, consider
a tower of finite Galois subextensions M|L|k contained in an infinite Galois
extensionK|k. The main theorem of Galois theory provides us with a canonical
surjection φML : Gal (M|k) � Gal (L|k). Moreover, ifN |k is yet another finite
Galois extension containingM , we have φNL = φML ◦ φNM . Thus one expects
that if we somehow ‘pass to the limit inM’, then Gal (L|k) will actually become
a quotient of the infinite Galois group Gal (K|k) itself. This is achieved by the
following construction.
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10 Galois theory of fields

Construction 1.3.2 A (filtered) inverse system of groups (Gα, φαβ ) consists
of:

� a partially ordered set (�,≤) which is directed in the sense that for all
(α, β) ∈ � there is some γ ∈ � with α ≤ γ , β ≤ γ ;

� for each α ∈ � a group Gα;
� for eachα ≤ β a homomorphismφαβ : Gβ → Gα such that we have equal-

ities φαγ = φαβ ◦ φβγ for α ≤ β ≤ γ .

The inverse limit of the system is defined as the subgroup of the direct product∏
α∈� Gα consisting of sequences (gα) such that φαβ(gβ) = gα for all α ≤ β.

It is denoted by lim← Gα; we shall not specify the inverse system in the notation
when it is clear from the context. Also, we shall often loosely say that lim← Gα

is the inverse limit of the groups Gα , without special reference to the inverse
system.
Plainly, this notion is not specific to the category of groups and one can

define the inverse limit of sets, rings, modules, even of topological spaces in an
analogous way.
We now come to the key definition.

Definition 1.3.3 A profinite group is defined to be an inverse limit of a system
of finite groups. For a prime number p, a pro-p group is an inverse limit of
finite p-groups.

Examples 1.3.4

1. A finite group is profinite; indeed, it is the inverse limit of the system
(Gα, φαβ ) for any directed index set �, with Gα = G and φαβ = idG.

2. Given a groupG, the set of its finite quotients can be turned into an inverse
system as follows. Let� be the index set formed by the normal subgroups
of finite index partially ordered by the following relation: Uα ≤ Uβ ⇔
Uα ⊃ Uβ . For each pairUα ≤ Uβ of normal subgroups we have a quotient
map φαβ : G/Uβ → G/Uα . The inverse limit of this system is called the
profinite completion ofG, customarily denoted by Ĝ. There is a canonical
homomorphism G → Ĝ.

3. Take G = Z in the previous example. Then � is just the set Z>0, since
each subgroup of finite index is generated by some positive integerm. The
partial order is induced by the divisibility relation:m|n iffmZ ⊃ nZ. The
completion Ẑ is usually called zed hat (or zee hat in the US). In fact, Ẑ is
also a ring, with multiplication induced by that of the Z/mZ.

4. In the previous example, taking only powers of some prime p in place of
m we get a subsystem of the inverse system considered there; it is more
convenient to index it by the exponent of p. With this convention the
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