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Review of Analytic Function Theory

1.1 Preamble

Complex analysis is the foundation for everything in this book. Special functions,
integral transforms, Green’s functions, orthogonal function expansions, and classi-
cal asymptotic techniques like steepest descent cannot be properly understood or
used without a thorough understanding of analytic function theory. We provide here
only a review; the student for whom this is a first exposure to the subject ought
to consult other texts that treat these topics exclusively. There are a vast number
of such books – many of them are very helpful. Among them, we cite a very com-
plete book for applied mathematicians, engineers, and scientists by Carrier, Krook,
and Pearson and the exhaustive treatise by Markushevich.

Because the subject was given birth by the need to solve problems in fluid
dynamics and electromagnetism, there is also a significant library of books on
those topics that make intensive use of complex-variable methods. In the area
with which the authors are most familiar, the classic book on hydrodynamics by
Milne-Thomson is a great resource. In particular, there is much attention paid there
to conformal mappings – a topic not discussed here because it is not directly help-
ful in most solution methods for partial differential equations – with some obvious
exceptions.

1.2 Fundamentals of Complex Numbers

A complex number, c, is defined by

c = a + ib, i ≡
√

−1, (1.1)

where a and b are real numbers. The quantities a and b are called, respectively,
the “real” and “imaginary” parts of the complex number, c. Thus, we will write a =
�eal(c) and b = �mag(c). It is often convenient to work with the complex conjugate
of the number, c, which we will denote always in this book by the notation c̄. (In
some books, the notation c∗ is used.) The complex conjugate of c is obtained by
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2 Review of Analytic Function Theory
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Figure 1.1. Argand diagram for a complex number.

everywhere replacing i by (−i). Hence, c̄ = a − ib. The modulus of the complex
number is a norm, defined by |c| = √

a2 + b2. Note, then, that

|c|2 = a2 + b2 = cc̄ = c̄c.

Complex numbers may also then be written in polar form, so that

c = |c| cos θ + i |c| sin θ = |c|eiθ ,

with the angle as indicated in Figure 1.1. This angle θ will be called the “argument”
of z. Hence, θ = arg(z).

Any complex number can be displayed in a plane of numbers by specifying
either (a, b) or (|c|, θ). The horizontal axis is the axis of real parts, and the vertical
axis is for the imaginary parts. The conjugate of any complex number is then located
at its reflection in the horizontal axis.

For doing arithmetic with these numbers, clearly addition and multiplication
result in

c1 + c2 = (a1 + a2) + i(b1 + b2),

c1 × c2 = (a1a2 − b1b2) + i(a1b2 + a2b1).

If a complex number is written as the sum of a real part and i times its imaginary
part, then division can be done by multiplying numerator and denominator by the
complex conjugate of the denominator. Consider the following example:

1 + 2i
2 − i

= 1 + 2i
2 − i

2 + i
2 + i

= 5i
22 + 12

= i.

1.2.1 Complex Roots and Logarithms

Before turning to more advanced questions of differentiation, integration, and so
on, we note something quite useful about roots that is mysterious with real quanti-
ties but makes sense in the complex plane. Suppose we wish to find the cube root
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1.2 Fundamentals of Complex Numbers 3

of 8. The real root, the one the calculator gives you, or you have memorized, is 2.
However, according to the fundamental theorem of algebra, there are three cube
roots of 8. We can find them as follows:

z = 8
1
3 = (

8e2nπ i) 1
3 . (1.2)

The quantity n is an integer. Since

eiθ = cos θ + i sin θ,

we see that exp(2nπ i) = sin(2nπ) + i sin(2nπ) ≡ 1. Continuing with what we wrote
in (1.2), we have

z = 8
1
3 = (

8e2nπ i) 1
3 = 2e2nπ i/3.

Therefore, there are three roots, spaced about the origin 120 degrees apart.
Consider, as a second example, the roots of the polynomial

λ4 + 16 = 0. (1.3)

Rearranging,

λ = (−16)
1
4 =

(
16e(2nπ+π)i

) 1
4 = 2eiπ/4+nπ i/2.

So, the four roots of the quartic equation all have modulus 2 and are spaced around
the origin 90 degrees apart, with the n = 0 one located at z = √

2(1 + i).
The exponential function ez is extended to complex numbers as

ez = ex+iy = ex(cos y + i sin y),

so that Euler’s identity is still valid. Notice that ez = 1, if z = 2nπ i, and n is any
integer. Thus, ez is periodic with period 2π i,

ez+2π i = ez.

The logarithm is the inverse of the exponential function, defined as the “multivalued
function”:

log z = log |z| + i arg z + 2πni, n = 0,±1,±2, . . . .

Many authors use ln |z| as an equivalent name for log |z| . In any case, the principal
branch of the logarithm is defined by taking n = 0 and −π < arg z < π. (Sometimes,
it may be more suitable to take the principal branch to be given by 0 < arg z < 2π.)
Thus, for example,

log i = log |i | + i arg i = log 1 + iπ/2 = π i/2,

with either choice of principal branch, while

log(−1) = log 1 + i arg(−1) = π i,

with the second choice.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-88824-0 - Partial Differential Equations in Fluid Dynamics
Isom H. Herron and Michael R. Foster
Excerpt
More information

http://www.cambridge.org/9780521888240
http://www.cambridge.org
http://www.cambridge.org


4 Review of Analytic Function Theory

Fractional powers are defined through the logarithm

zα = eα log z, z �= 0.

So zα is a multivalued function when α is not an integer. For example,

i i = ei log i = ei(log 1+i arg i+2nπ i), n = 0, 1, 2, . . .

For its principal value, take n = 0 and i i = e−π/2. Much of this type of analysis
extends to the inverse trigonometric and inverse hyperbolic functions. For example,
since

sin w = eiw − e−iw

2i
= z,

say, then

w = sin−1 z = 1
i

log
[
iz + (1 − z2)1/2] .

If, z �= ±1, (1 − z2)1/2 has two possible values. In particular, to evaluate sin−1 (2),
we have

sin−1(2) = 1
i

log
[
2i ± i

√
3
]

=
⎧⎨
⎩

1
i

(
log(2 − √

3) + i
(

π
2 + 2nπ

))
1
i

(
log(2 + √

3) + i
(

π
2 + 2nπ

)) , n = 0,±1,±2, . . .

= π

2
+ 2nπ − i log(2 −

√
3),

π

2
+ 2nπ + i log(2 +

√
3), n = 0,±1,±2, . . . .

Now, observe that since (2 + √
3)(2 − √

3) = 1 and log(2 + √
3) = − log(2 − √

3),
therefore

sin−1 (2) = π

2
+ 2nπ ± i log(2 +

√
3), n = 0,±1,±2, . . . .

1.3 Analytic Functions

Just as the function y = f (x) assigns one real number, y, to another real number,
x, so we can define functions of a complex variable, say, z = x + iy. Then, one anal-
ogy that might be drawn is to a vector function of two variables (x, y). Hence, for
example, the function f (z) = z2 takes the value 1 for z = 1, the value −4 for z = 2i ,
and the value (−3 + 4i) for z = 1 + 2i . The independent variable is defined over a
plane like that shown in Figure 1.1. As in the case of any complex number, this func-
tion can be split into real and imaginary parts, so that we could write the function in
terms of two real functions of real variables; that is,

f = U(x, y) + iV(x, y), z = x + iy. (1.4)
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1.3 Analytic Functions 5

1.3.1 Limits and Continuity

The theory of complex functions is so closely tied to that of functions of two real
variables, and functionally similar it turns out, to that of a single real variable, that
many of the underlying processes are often taken for granted. It is important to
note that a sequence of points zn → z0, if and only if, (xn + iyn) → (x0 + iy0). For a
function f (z), the process limz→z0 f (z) takes place as

lim
(x,y)→(x0,y0)

[U(x, y) + iV(x, y)] = lim
(x,y)→(x0,y0)

U(x, y) + i lim
(x,y)→(x0,y0)

V(x, y).

Thus, the definition of continuity,

lim
z→z0

f (z) = f (z0),

means that

lim
(x,y)→(x0,y0)

[U(x, y) + iV(x, y)] = U(x0, y0) + iV(x0, y0),

as well. In particular, this means that the indicated limits must be independent of
the direction in which they are taken.

So, for elementary functions, such as polynomials, the limits are as to be ex-
pected:

lim
z→3i

(z2 + 9) = 0.

Even for quotients, one may conclude that

lim
z→3i

z2 + 9
z − 3i

= lim
z→3i

(z + 3i) (z − 3i)
z − 3i

= lim
z→3i

(z + 3i) = 6i.

Continuous functions are defined by their limits so f (z) = |z| is everywhere contin-
uous. However, f (z) = arg z is discontinuous at each point on the nonpositive real
axis, with a cut on the non-positive real axis.

1.3.2 Differentiation

Let us consider the derivative of this function of the complex variable, z, by analogy
with real variables. Then,

df
dz

= lim
�z→0

[
f (z + �z) − f (z)

�z

]
(1.5)

= lim
�z→0

[
U(x + �x, y + �y) + iV(x + �x, y + �y) − U(x, y) − iV(x, y)

�x + i�y

]

= lim
�z→0

[
U(x + �x, y + �y) − U(x, y) + i (V(x + �x, y + �y) − V(x, y))

�x + i�y

]
,
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6 Review of Analytic Function Theory

after collecting the real and imaginary parts. The partial derivatives Ux and Vx are
just those when y is held constant; �y = 0. Likewise, Uy and Vy arise when x is held
constant; �x = 0. The result is that the derivative df/dz may be written in two ways:

df
dz

=
{

Ux + iVx, if �y = 0
Vy − iUy, if �x = 0

. (1.6)

Using Taylor’s theorem for a function of two variables, the expression (1.5) can
be simplified. That is, the limit may be taken along some line in the complex plane
along which both �x → 0 and �y → 0. The difference quotient then becomes

df
dz

= lim
�z→0

[
(Ux + iVx)�x + i(Vy − iUy)�y + higher-order terms

�x + i�y

]
,

which may be simplified and the limit performed. The result is

df
dz

= (Ux + iVx) + i S(Vy − iUy)
1 + i S

, (1.7)

where S ≡ �y/�x is the slope of the line in the complex z-plane along which the
limit is performed. The cases where S = 0 and S = ∞ were obtained in (1.6). Taking
a cue from several real variables, it would be sensible if the derivative of a complex
function at any location z were independent of the direction of approach to that
point – a kind of generalization of the idea of continuity for real functions. Thus, we
give the following definition:

Definition 1.1. A function f , of a complex variable, z, is “analytic” in a region R of
the complex plane if its derivative exists and is single-valued in that region.

That means, from the above results, that f ′ should be independent of the con-
stant S, and inspection shows that such independence can be achieved if and only if
Ux + iVx = Vy − iUy. On equating real and imaginary parts, we obtain the Cauchy–
Riemann equations, and the associated theorem is as follows in Theorem 1.1.

Theorem 1.1. A necessary and sufficient condition for a function, f = U + iV, of a
complex variable z to be analytic in a region R of the complex plane is that

∂U
∂x

= ∂V
∂y

,

∂V
∂x

= −∂U
∂y

. (1.8)

everywhere in R, and Ux, Uy, Vx and Vy exist in R.

Equations (1.8) are known as the Cauchy–Riemann equations.
Going back to (1.7), and inserting the Cauchy–Riemann equations, we regain

the formulas for the derivative – when it exists, namely,

df
dz

= ∂U
∂x

+ i
∂V
∂x

= ∂V
∂y

− i
∂U
∂y

.
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1.3 Analytic Functions 7

Note that since z = x + iy and z̄ = x − iy, these equations may be inverted, so
that x = (z + z̄)/2 and y = (z − z̄)/(2i). Then, from (1.4), in general, f is a function
of both z and z̄. However, it can easily be shown, that the derivative cannot be
independent of S unless f is independent of z̄. Thus, we have the result (see Exer-
cise 1.3)

Corollary 1.1. A necessary condition for a function of a complex variable to be ana-
lytic anywhere in the complex plane is that ∂ f/∂ z̄ ≡ 0 in the plane.

Let’s put it a different way: Suppose we choose any two functions U and V of x
and y. Then, we can create, from those functions, a function of a complex variable
by writing f = U + iV as in (1.4). Then, as noted above, this function will in general
be a function of both z and z̄. What Corollary 1.1 says is that if z̄ appears in the
expression for f , it cannot be an analytic function; it is impossible. (A necessary
condition!) If f depends on z alone, then the function may be analytic in some
portion of the complex z-plane.

Now, for some examples. Consider the function f = x2 − y2 + 2i xy. The reader
can easily verify that the Cauchy–Riemann equations are indeed satisfied. The par-
tial derivatives all exist in the finite z-plane, so we conclude that this function is ana-
lytic in the finite z-plane. Such a function is said to be an “entire function.” Note, in
terms of the corollary noted above, that this function can also be written as f = z2.
As a second example, consider f = x2 − y2 − 2i xy. The Cauchy–Riemann equa-
tions (1.8) are not satisfied for any z. Hence, the function is not analytic anywhere
in the plane. (In fact, this function is f = z̄2 and hence cannot be analytic!) As a final
example, consider the function f = 1/z. The real and imaginary parts are given by
U = x/(x2 + y2) and V = −y/(x2 + y2). Again, the Cauchy–Riemann equations are
satisfied in the plane, but note that the partial derivatives are unbounded at the ori-
gin. Hence, this function f = 1/z is analytic everywhere except at z = 0. The origin,
in this case, is a singularity of the function.

1.3.3 Harmonic Functions

For an analytic function f = U + iV, note that

∂2U
∂x2

= ∂2V
∂x∂y

= −∂2U
∂y2

=⇒ ∇2U = 0.

Both Cauchy–Riemann equations (1.8) were used in this derivation. In the same
way, V can also be shown to be a solution of Laplace’s equation. In this derivation, it
was tacitly assumed that if f is analytic, so is f ′. This is true and will be demonstrated
later in Section 1.4.

At a point z0 = x0 + iy0, where f ′(z0) = 0, ∇U = 0 and ∇V = 0, so the point
(x0, y0) is a critical point for both of the conjugate functions. Furthermore, since U
and V are harmonic, the critical point will be a saddlepoint as long as f is not a
constant.
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8 Review of Analytic Function Theory

The real and imaginary parts of polynomials are thereby harmonic functions. In
a similar manner, with restrictions on the domains, other harmonic functions may
be constructed. For example,

log z = log
√

x2 + y2 + i arctan
( y

x

)
,

has harmonic components on the whole plane, except at the origin.

1.3.4 Note on Fluid Dynamics

In incompressible fluid flow, we know that both the velocity potential, φ, and the
stream function, ψ , obey Laplace’s equation. So, we can build an analytic function
F = φ + iψ to describe the fluid flow. Note that Equations (1.8) are, with these
functions,

u = ∂φ

∂x
= ∂ψ

∂y
,

v = ∂φ

∂y
= −∂ψ

∂x
.

Therefore, instead of working with real functions φ and ψ , we can deal with a com-
plex potential F . From this derivative formula, the fluid velocity components are
simply related to the derivative of F , that is,

F ′ = φx + iψx = u − iv.

So, for example, stagnation points in a flow are found by putting F ′ = 0.
A thorough development of these ideas can be found in may places; a good

graduate-level reference is a book by Milne-Thomson.

1.4 Integration and Cauchy’s Theorem

Consider a complex function, f (z). Along some curve C from point a to point b in
the plane, choose any set of (N + 1) points {zk}, separated by intervals {�zk}, where
�zk = zk+1 − zk, along a segment of the curve from a = z0 to zN = b, such that

sup
N

N∑
k=0

|�zk|

is finite. The curve, is called a “rectifiable curve.” Consider the sum

SN ≡
N∑

k=0

f (zk)�zk. (1.9)

In order for the terms in this sum to have meaning, we assume f to be continuous
along the curve C. If we take the limit as N → ∞, define the limit of (1.9) as an
integral (Markushevich, Vol. I),

S∞ =
∫ b

a
f (z)dz. (1.10)
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1.4 Integration and Cauchy’s Theorem 9

This definition of the integral is similar to that of a line integral in the plane.
The ideas of line integration are often used in the evaluation of complex integrals.
There is an additional potential tool in the Cauchy–Riemann equations. However,
to employ the Cauchy–Riemann equations on a region R containing C, f should be
analytic. In particular, it may be shown that this integral is independent of the path
chosen between a and b, if f obeys the Cauchy–Riemann equations along C, that
is, if the function is analytic along C. The region R, whether bounded or unbounded
must be simply connected, that is, whenever R contains a simple, rectifiable, closed
curve C (Jordan curve), it also contains the interior of C.

It may also be demonstrated that the familiar antiderivative forms for standard
functions of real variables remain valid for antiderivatives of analytic functions, so
that the antiderivative of exp(kz), for example, is exp(kz)/k.

It follows that Cauchy’s theorem is crucial to being able to do integration in the
complex plane. The theorem is stated as follows in Theorem 1.2.

Theorem 1.2. Let R be a simply connected region. If a function f , is single-valued
and analytic on and inside a closed, rectifiable path C in R, then

∮
C f (z)dz = 0.

A simple proof involving only Green’s theorem in the plane is as follows:

Write the analytic function f as

f (z) = u(x, y) + iv(x, y).

Call the region inside C as D. Then using the ideas of line integration underlying
Equation (1.10), we take dz = dx + idy so that∮

C
f (z)dz =

∮
C

(udx − vdy) + i
∮

C
(vdx + udy)

= −
∫∫

D

(
∂v

∂x
+ ∂u

∂y

)
dxdy + i

∫∫
D

(
∂u
∂x

− ∂v

∂y

)
dxdy.

By application of Green’s theorem and the Cauchy–Riemann equations, each of the
last two integrals is zero and the result has been proved. The proof may be found in
standard complex-variable texts (Markushevich, Vol. I).

Consider the integral of the function zn, with n an integer, carried out around a
circle of radius r , centered at the origin, and denoted here by C. Hence,∮

C
zndz = irn+1

∫ 2π

0
ei(n+1)θ dθ. (1.11)

The Cauchy theorem states only that this integral must be zero for n ≥ 0. Clearly,
on doing the integration, we see that the integral is exactly zero for all values of n
different from −1. For n = −1, however, the value of the integral is 2π i . Therefore,
we can write ∮

C
zndz =

{
0, n �= −1

2π i, n = −1
. (1.12)
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10 Review of Analytic Function Theory

A
B

C

C′

Figure 1.2. Integration path.

This result is actually more general than it appears. Consider another curve, say C′,
which is of arbitrary shape, which also encircles the origin and wholly contains C –
f is analytic everywhere on C′ and in the region between C and C′. As shown in
Figure 1.2, consider now a new closed curve that is constructed by using C and C′

except at a small segment of each, where the two curves are connected with two
line segments A and B. Around a new closed curve formed going around C to A,
along A to C′, around C′ in the clockwise direction, then back to C along B, the
integral is zero, according to the Cauchy theorem. Since f is analytic between C
and C′, as we let A approach B, the integrals along those two paths just cancel,
leaving the integrals along C and C′ to add to zero. If we change the direction of
integration along C′ to the usual, positive (counterclockwise) direction, then we find
that the integral around C′ is exactly equal to the integral along C. Thus, the result
in Equation (1.12) is independent of the shape of the path.

This discussion shows how Cauchy’s theorem may be extended to regions with
“holes,” which are multiply connected regions.

The question naturally arises, does the condition
∮

C f (z)dz = 0 imply that f is
analytic? The answer to this is known as Morera’s Theorem and is simply

Theorem 1.3. Let R be a open connected region. If a function f is continuous in R
and

∮
C f (z)dz = 0 for all closed curves C in R, then f (z) is analytic in R.

The proof will not be presented here, but does depend on showing that such an
f (z) is the derivative of analytic function F(z) and hence is analytic.

1.4.1 Cauchy’s Integral Formula

The expression given by (1.12) is indicative of the importance of a more general
line integral for analytic functions. This result, called “Cauchy’s integral formula,”
is stated as
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