Index

R statistical package, 355

ϕ, particle size, 239

3He/4He indicator of magmatism, 104, 188, 196
137Cs in high-level waste, 31

14C age determination, 86, 233, 500
222Rn inhalation dose, 558
226Ra inhalation dose, 558

39Ar/40Ar age determination, 86
90Sr in high-level waste, 31

a-value, 268
b-value, 268

active tectonics, 60, see neotectonics, 492
adaptive kernel function, 354, 360
administrative law judge, 488
advection–diffusion equation, 236, 468
adventive cone, 350
aeromagnetic map, 459
age determination, 232, 573
fault slip, 500
reliability, 86, 312
volcano, 86

air-photos, 498
Akita-Komagatake volcano, 333
Akita-Yakeyama volcano, 333
aleatory variability, 262, 350
Aleutian earthquake, 282
alkaline basalt, 196, 430
Alligator Rivers region, 564
alluvial fan, 61, 120, 467
Alpine fault, 29
Alpine orogeny, 552
Amargosa Desert, 458
Amargosa trough, 198
Amargosa Valley isotopic province, 351
analog
experiment, 406, 430
ore deposit, 32, 556–557
volcano, 200, 465

andesite, 87, 188
volcanism, 333

Andra, 521
annular flow, 410
antecedent drainage, 120
anticline, 119
Aosawa basalt, 14, 315
Aral Sea, 511
Armero, Colombia, 74–77
Arrhenian model, 87, 407
aseismic strain, 156
ash, see tephra, 232

ASHPLUME computer code, 468
asperity, 53
asteroid, 285
asthenosphere, 33
asymptotic mean integrated squared error, 355
atmospheric phenomenon, 586
Atomic Energy Commission, 10
atoms for peace, 1
Axial Volcanic Zone, 387

backarc, 311, 322
basin, 308, 329
Backbone Range, 163, 169, 267, 313
ballistic projectile, 584–585
bandwidth, see kernel bandwidth
Bare Mountain fault, 198, 459

basalt, 87, 188
basaltic volcanic field, see volcanic field
Basin and Range, 83, 195, 351, 385
Bayaan Lineament, 231
Bayaan nuclear power plant, 11, 78, 229–231
batch partial melting, 203
Bayesian model, 336, 370
bentonite, 555
Beznau nuclear power plant, 598
BIFROST project, 145
Big Lost River fault, 386
Big Lost trough, 387
bigaussian, 372
biosphere dose conversion factor, 473
bivariate Gaussian distribution, 353
blast, 579–580
Bodega Head, 9
boiling-over eruption column, 250
bolide impact, 285
bootstrap, 234, 360
borehole, 61, 532, 536
eruption through, 414
Bouguer gravity anomaly, see gravity anomaly
brecciation, 57
brittle crust, 53, 160
deforestation, 540
Buckboard Mesa, 198
buoyancy force, 88, 201, 412, 460
buried volcano, 349, 458
caldera, 85, 232
calibrated expert, 593
California Department of Health Services, 488
Cantonal referendum, 552
capable volcano, 233, 570, 578
Cape Mendocino earthquake, 129
Cascade subduction zone, 483, 597
cataclasism, 57
Cauchy kernel function, 359
cementation, 53
Cerro Negro volcano, 96
Chaitén volcano, 86
Charleston earthquake, 485, 597
Chernobyl nuclear power plant, 1
Chicxulub impact, 285
Chilean earthquake, 31, 277
Chin-shan nuclear power plant, 78
Chokai-Kurikoma volcanoes, 312
Choleski decomposition, 373
Cigar Lake uranium ore deposit, 556
Cima volcanic field, 458
cladistics, 335
crater, 540
Coulomb failure model, 246
coupled nature of volcanic phenomena, 252, 578
Cox process, 371–372
Crater Flat, 459
Crater Flat basalt, 198
craton, 24, 147, 549
credible hypothesis, 603
Crowe, Bruce M., 455
crust, 176
assessing horizontal motion, 63–65
assessing vertical motion, 65
continental, 53
ocean, 55
volcanic arc, 188
crustal strain rate, 257, 259
thinning, 117
crystal, 87, 407
cumulative distribution function, 376
dacite, 88, 188
damage to community infrastructure, 245, 298–299, 589
data assimilation, 375, 381
database, 600
active fault, 257, 266
earthquake, 349, 353, 597
geochemical, 201
geoscientific, 533, 597
global positioning system, 163
tsunami, 285–287
volcano, 329–332, 568–570, 573, 575–576
Death Valley, 351
fault system, 356
debris avalanche, 100, 581–582
debris flow, 100, 467, 582–583
decompression melting, 81
defense in depth, 4–5, 17
deforestation budget, 62–63
of the crust, 50–60
zone, 535–536
degassing-induced crystallization, 408
deglaciation, 143
denudation, 119
rate, 551
depleted uranium, 558

confining pressure, 51
consequence analysis, 457
convergence rate, 118
coral microatoll, 121
coseismic displacement, 41, 158
uplift, 117
Couette flow, 421
Coulomb failure model, 246
coupled nature of volcanic phenomena, 252, 578
Cox process, 371–372
Crater Flat, 459
Crater Flat basalt, 198
craton, 24, 147, 549
credible hypothesis, 603
Crowe, Bruce M., 455
crust, 176
assessing horizontal motion, 63–65
assessing vertical motion, 65
continental, 53
ocean, 55
volcanic arc, 188
crustal strain rate, 257, 259
thinning, 117
crystal, 87, 407
cumulative distribution function, 376
dacite, 88, 188
damage to community infrastructure, 245, 298–299, 589
data assimilation, 375, 381
database, 600
active fault, 257, 266
earthquake, 349, 353, 597
geochemical, 201
geoscientific, 533, 597
global positioning system, 163
tsunami, 285–287
volcano, 329–332, 568–570, 573, 575–576
Death Valley, 351
fault system, 356
debris avalanche, 100, 581–582
debris flow, 100, 467, 582–583
decompression melting, 81
defense in depth, 4–5, 17
deforestation budget, 62–63
of the crust, 50–60
zone, 535–536
degassing-induced crystallization, 408
deglaciation, 143
denudation, 119
rate, 551
depleted uranium, 558
Index

design basis, 264, 566

design-basis earthquake, 13
detachment fault, 27
detailed site investigation, 528
deterministic analysis, 236–242, 258, 486, 567, 578
deviatoric stress, 148
Diablo Canyon nuclear power plant, 10
diatreme, 467
differential subsidence, 397–399
diffuse deformation, 40–41, 56
dike, 88, 89, 188, 197, 350, 461, 536
dike–fault interaction, 460, 463
dike–repository interaction, 443

divergent margin, 25
dose limit, 455
Dounreay site, 516
downcutting river, 61
drift, see tunnel
Drigg low-level waste site, 517
drillhole, 459, see borehole
ductile
crust, 53
deforamaton, 539
dusty gas model, 464

Earth tide, 548
earthquake
aftershock, 45, 350
background, 260
cycle, 30–31, 47, 261
erpicer, 346
focus, 30
frequency, 48–49, 58, 260
glacial, 9

ground motion, 495
historical record, 50
hypocenter, 30
largest magnitude, 31
magnitude, 30–31, 260, 598
return period, 263, 494
rupture, 46, 398
volcano, 587–588

wave attenuation in the Earth, 30
earthquakes in Japan, influence on regulation, 492–494
East Africa rift, 37
eastern Snake River Plain, 385–391
EBR-1 reactor, 1
Eifel volcanic field, 101

Eisenhower, President Dwight, 1
elastic
defomation, 167
half-space model, 160–161
strain, 41–47, 157–158
Eldfell volcano, 414
Electric Power Research Institute, 486, 595
electrical power generated, 1, 195, 492
electrical resistivity, 61
elevated basement, 313
elliptical kernel, 354
Eltanin impact, 285
emergency response, 589
empirical approach to evaluation of volcanic hazard, 307
deglacial fault, 146
ergy cone, 94, 249, 580
engineered barrier system, 6, 406, 454, 551
engineering design, 264
Entsorgungsnachweis study, 554

Epamechnikov kernel function, 359
epistemic uncertainty, 169, 262, 595
ergodic assumption, 273
erosion, 116, 119–120, 548
eruption
column, 91
column height, 200, 232, 468
duration, 465
effusive, 90, 339
explosive, 91, 339
magnitude, 91–92, 594
mass discharge, 98, 223, 237
mass flow, 200–201
overview of effects, 94–101
volatile-poor magma, 430–431
volume, 594
volume flux, 458
eruption dynamics, 90–91
eruption scenario, 237, 413, 461, 568

eustatic sea-level change, 120

evaluator, 603

event definition, 359
excavation damage zone, 542
exceedance probability, see probability of exceedance
exclusion zone, 332
exhumation rate, 122
expert
assessment, 600–608
elicitation, 262, 455, 574, 588, 593
NRC guidelines, 598
judgment, 346
training, 603

extreme events
bolide impact, 285
coastal sites, 518–519
earthquake, 31
sedimentation, 510
volcanic, 83

Factor of Safety, 247
failed rift, 147
FAR computer code, 468
fault, 27–30
active, 14, 43, 157, 261
active, investigation of, 497–502
branch, 60
classification of slip rate, 43, 494
creep, 159
displacement, 257, 261
glacial, 9, see glacially induced faulting
hidden, 157, 265
maximum magnitude, 260
reactivation, 142
rupture, 46, 258, 481
scarp, 401
slip, 45, 161
syn-intrusive, 463
splay, 53
zone, 58, 503, 538
Fennoscandian ice sheet, 143
Fennoscandian shield, 535
fission track age determination, 232
fissure-fed eruption, 466
flexural deformation, 503
flexure, 398
flood, 582–583
flood basalt eruption, 410
flow strength, 50
fluvial process, 119
fold, 56, 60, 157
foliation, 535
foot-wall, 119
fore-Alps, 552
forebulge, ice sheet, 143
forecasting
uplift rate, 122–123
volcanic activity, 102–107, 326–328
Forssmark site, 530
fractional crystallization, 201, 203
fracture
strength, 50
toughness, 218
fragmentation, 91, 200, 219
Fukouzu fault, 25, 501
Fukuoka-ken earthquake, 493
Gösgen nuclear power plant, 598
gamma dose, 557
gas segregation in magma, 416
Gaussian kernel function, 337, 354, 393
Gaussian space, 372
geochemical data for volcano hazard assessment, 576–577
geochemical model, 543
geochemistry, 196
geodetic
levelling, 144
surveying methods, 121
geographic information system, 603
good, 120
geological map, 573
geological repository, 6, 195
climate change, 143
effect on dike propagation, 463
erosion scenario, 559
fault, 45, 57, 502–503
glacial unloading, 527
in subduction zone, 549–550
magnatic disruption, 196, 307, 326, 406–407, 429–433,
461–468
operational lifetime, 7, 9, 32, 195, 308–309
radiation dose in comparison with background values,
559–560
radiological risk, 7
sea-level change, 519–520
tectonic hazards, 43–50
uplift and subsidence, 548–549
geomorphologic marker horizon, 61, 121–122
GEONET, 42, 63, 163
geophysical
anamorphosis, 377
data for volcano hazard assessment, 576–577
methods, 105, 458, 499–500, 532
fault characterization, 61
model, 365, 370
geoscientific model, 497
geosphere–biosphere interface, 555
geothermal fluid, 588
Gibbs sampler, 372
glacial
cycle, 119
isostatic adjustment, 142
loading, 20, 142, 548
maximum, 143
maximum rebound, 144
rebound model, 146
uplift, 535
glacially induced faulting, 146–151
glaciation
effects of repeated, 559
global plate motion model, 36, 163
<table>
<thead>
<tr>
<th>616</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>global positioning system, 32, 41–42, 103, 257</td>
<td>hydrogeology, 481</td>
</tr>
<tr>
<td>continuous, 156</td>
<td>hydrothermal alteration, 538</td>
</tr>
<tr>
<td>measurement, 158–160</td>
<td>hydrothermal system, 232, 463</td>
</tr>
<tr>
<td>network, 42</td>
<td>hydrovolcanic eruption, see phreatomagmatic eruption</td>
</tr>
<tr>
<td>overview, 156–158</td>
<td>Hyogo-ken Nanbu earthquake, 13, 127, 493</td>
</tr>
<tr>
<td>uncertainty, 163–164</td>
<td>hyperconcentrated flow, 248</td>
</tr>
<tr>
<td>GMFIX computer code, 413</td>
<td>ice</td>
</tr>
<tr>
<td>GPS, see global positioning system</td>
<td>history, 149</td>
</tr>
<tr>
<td>graben, 119</td>
<td>loading, 535, 550</td>
</tr>
<tr>
<td>grain-size distribution, 236, 243</td>
<td>sheet</td>
</tr>
<tr>
<td>Grand Banks tsunami, 282–283</td>
<td>continental, 142</td>
</tr>
<tr>
<td>gravity</td>
<td>model, 150</td>
</tr>
<tr>
<td>absolute measurement of, 146</td>
<td>Chinon fault, 504</td>
</tr>
<tr>
<td>anomaly, 179, 311, 314, 349, 382</td>
<td>Idaho National Laboratory, 5, 78, 385, 485</td>
</tr>
<tr>
<td>Great Sumatran earthquake, 4, 24, 41, 280–281</td>
<td>igneous</td>
</tr>
<tr>
<td>Greenwater Range, 351</td>
<td>effects abstraction, 470–472</td>
</tr>
<tr>
<td>ground deformation, 234, 586–587</td>
<td>event, 430</td>
</tr>
<tr>
<td>ground motion, 260, 594</td>
<td>ignimbrite, 198, 452</td>
</tr>
<tr>
<td>unbounded, 263</td>
<td>Idaho Mountains, 181, 316</td>
</tr>
<tr>
<td>ground-penetrating radar, 61</td>
<td>independent event, 343, 350</td>
</tr>
<tr>
<td>ground rupture, 30</td>
<td>Indian Ocean tsunami, 276, 280–281</td>
</tr>
<tr>
<td>groundwater, 588</td>
<td>inertial force, 410</td>
</tr>
<tr>
<td>contaminant plume, 472</td>
<td>inhalation of aerosols, 473</td>
</tr>
<tr>
<td>contamination, 485–486</td>
<td>initial site investigation, 528–529, 571–573</td>
</tr>
<tr>
<td>fast pathway, 529</td>
<td>INTEC facility, 390</td>
</tr>
<tr>
<td>oxidation, 556</td>
<td>interferometric synthetic aperture radar, 103, 121</td>
</tr>
<tr>
<td>pathways for radionuclide transport, 196</td>
<td>intermediate-level waste, 6, 552</td>
</tr>
<tr>
<td>radionuclide transport, 454</td>
<td>International Atomic Energy Agency, 1, 14, 230, 566</td>
</tr>
<tr>
<td>Gutenberg–Richter relationship, 260, 293–294</td>
<td>dose intervention level, 558</td>
</tr>
<tr>
<td>HABOG spent fuel facility, 6</td>
<td>Safety Series, 3, 566</td>
</tr>
<tr>
<td>hanging wall, 60, 117, 388</td>
<td>international geomagnetic reference field, 459</td>
</tr>
<tr>
<td>Hanshin earthquake, 29</td>
<td>international terrestrial reference frame, 163</td>
</tr>
<tr>
<td>hazard curve, 243, 261, 263, 594</td>
<td>interseismic</td>
</tr>
<tr>
<td>hazard map, 107, 349, 380</td>
<td>coupling, 159</td>
</tr>
<tr>
<td>Headquarters for Earthquake Research Promotion, 493</td>
<td>strain, 259</td>
</tr>
<tr>
<td>Hesse volcanic field, 399</td>
<td>intraplate seismicity, 352</td>
</tr>
<tr>
<td>Hekla volcano, 88</td>
<td>intrusion, 81, 89, 197, 419</td>
</tr>
<tr>
<td>Hele–Shaw cell, 433</td>
<td>nose region, 432</td>
</tr>
<tr>
<td>Henry’s law, 409</td>
<td>isomass map, 239</td>
</tr>
<tr>
<td>Hidden Cone volcano, 198</td>
<td>isopach map, 239, 389</td>
</tr>
<tr>
<td>high-level waste, 6, 552</td>
<td>isotasy, 39, 65, 116, 142, 535, 550</td>
</tr>
<tr>
<td>US inventory, 429</td>
<td>isotatic rebound, 550</td>
</tr>
<tr>
<td>high-level waste repository, see geological repository</td>
<td>Inōgawa–Shizuoka tectonic line, 504</td>
</tr>
<tr>
<td>Hokkaido-Nansei-oki earthquake, 126, 493</td>
<td>Iwate volcano, 333</td>
</tr>
<tr>
<td>Hokkaido-Toho-oki earthquake, 493</td>
<td>Izu–Bonin arc, 176</td>
</tr>
<tr>
<td>Holocene, 567</td>
<td>Jabiluka mine site, 562</td>
</tr>
<tr>
<td>homogeneous Poisson model, 369</td>
<td>Jackass Flat, 198, 459</td>
</tr>
<tr>
<td>Hood volcano, 179</td>
<td>Japan Agency for Marine–Earth Science and Technology, 178</td>
</tr>
<tr>
<td>hot fingers, 178–182, 316, 374</td>
<td>Java earthquake, 279</td>
</tr>
<tr>
<td>hot-spot volcanism, 35, 81, 386</td>
<td>Jefferson volcano, 179</td>
</tr>
<tr>
<td>Humboldt Bay nuclear power plant, 483–484</td>
<td>joint, 57, 538</td>
</tr>
</tbody>
</table>
K/Ar age determination, 232
Kalpakkam nuclear power plant, 4
Kaluzny, Y., 521
kaolinitization, 539
Kashiwazaki–Kariwa nuclear power plant, 14–16, 493
Katmai volcano, 237
kernel
bandwidth, 354, 360, 393
bandwidth matrix, 354, 393
bandwidth selector algorithm, 393
bandwidth threshold, 337–338
density estimate, 337, 353–358
density estimation, 393
Kikai caldera, 124
Kilauea volcano, 88, 410
Kilbourne Hole volcano, 202
Kobe earthquake, 29, 493
Koolau volcano, 281
Kozloduy nuclear power plant, 10
Krafta volcano, 88, 414
Krakatau volcano, 284–285
kriging variance, 373
Kurile basin, 308
Kushiro-oki earthquake, 493
La Manche waste site, 521
Laacher See volcano, 101
lahar, 75, 100, 582–583
inundation, 246
source region, 245–249
volume, 247
volumetric discharge, 75
LAHIRZ computer code, 246
laminar flow, 410
Lamington volcano, 86
Landers fault, 505
landslide, 281–282, 581–582
Lansjärv fault, 151
lapilli, 232, 467
Lathrop Wells volcano, 198, 351, 407, 455
Laurentide ice sheet, 143
lava
beccca, 462
dome, 90
flow, 98, 200, 389, 419, 580–581
flow architecture, 390
tube, 419
Lawrence Livermore National Laboratory, 594
Lexemar site, 530
Leibstadt nuclear power plant, 598
lighting, 586
linear accelerator, 548
liquids, 408
literature search, 497–498, 527, 572
lithosphere, 33
lithospheric mantle, 460
lithostatic pressure, 409
Little Black Peak volcano, 198
Lituya Bay landslide, 277, 281
loess stratigraphy, 132
log-logistic, 234
logic tree, 262, 603
Loma Prieta earthquake, 29
low velocity zone, 180, 314, 401
low-level waste, 482, 552
luminescence dating, 132
Lunar Crater volcanic field, 202, 458
maar, 101, 202
magma
bimodal, 186
bubbles in, 87, 407
compressible flow, 219
cooling, 418–419
decompression, 411–413
density, 87, 407
discharge rate, 90
enthalpy of crystallization, 218
flux, 409
foam, 416
heat capacity, 218
production, 386, 458
solidification, 219
temperature, 88
thermal diffusivity, 417
time-dependent viscous flow, 430
two-phase flow, 410–411
underplating of crust, 311
viscosity, 87–88, 407
volatile-poor, 430
volatiles, 208, 220, 407
magma ascent, 86–90, 214–223, 350
rate, 88, 410–411
magma generation, 86, 176, 201–210, 350
pressure, 211–212
magmatic event, 350
magmatism
spatial variation, 390–391
magnetic
anomaly, 198, 359, 459, 535, 599
polarity reversal, 33
magnetotellurics, 61, 104
Manhattan project, 1
mantle
aqueous fluid, 86, 187
convection, 186
plume, 81, 187
viscoelastic, 150
mantle (Contd.)
viscosity, 143, 150
 wedge, 186–187, 310–311
 Mariana arc, 177
 marine terrace, 61, 121–123, 502
morphology, 127
 marine transgression, Holocene, 124
Mariveles volcano, 231
Markov model, 370
Marlborough earthquake, 44
Martinsville low-level waste site, 482–483
maximum horizontal compressive stress, 429
mechanical erosion by magma, 414
median clast diameter, 238
melt, 87, 407
metamorphism, 539
Metsamor nuclear power plant, 10, 78
Mg #, 210–211
 microseismic network, 535
middle crust, 186
migmatite, 538
Milankovitch cycle, 548
mine tailings, 562
 Miyagiken-oki earthquake, 13, 164
 Miyake-jima volcano, 188
 monogenetic volcano, 85, 350, 385, 430, 452
 Monte Carlo, 169, 242, 347, 361, 373, 456
 MOST computer code, 289
motivational bias, 600
 Mount St Helens, 4
Mühlberg nuclear power plant, 598
Mülheim–Kärlich nuclear power plant, 78, 101
multivariate potential, 372
 Muria nuclear power plant site, 78
 Nagano-ken Seibu earthquake, 493
 Nagra, 530, 598
nanostrain, 41
Napot Point, 229
Natlub volcano, 230
eruption history, 232–233
National Center for Environmental Prediction, 239
National Research Council, 488
nationwide evaluation factor, 309, 545
natural barrier system, 406, 454, 550
Neodani fault, 506
neotectonics, 60–63
Nevada Test Site, 195
Nevado Del Ruiz volcano, 74–77
New Madrid earthquake, 48, 597
Nihonkai Chubu earthquake, 493
Nigata-Chuetsu-oki earthquake, 493
Nigata-ken Chuetsu earthquake, 493
Nirex, 528
non-ergodicity, 264
non-homogeneous Poisson model, 369
non-stationary, 332, 369
normal fault, 27, 118, 452
northern hemisphere ice sheets, 143
Northridge earthquake, 157
Noto-hanto-oki earthquake, 127, 493
nuclear power plant
advanced boiling water reactor, 12
construction, 2, 195
 decommissioning, 483
 hazard rate, 574
 locations, 3
 operational lifetime, 6
 triggered shutdown, 11, 589
nuclear reactors, research, 2
nuclear renaissance, 1
nuclear test-ban treaty, 2
Nuclear Waste Management Organization of Japan, 19, 309, 326, 528
nugget effect, 379
Nusselt number, 219
NUVEL-1A, 39
Oberbauenstock site, 552
oblique-slip fault, 29
ocean
 basin, 119
trench, 33, 176
 ocean-bottom seismograph, 178
 Oklo uranium ore deposit, 556
 Okkiluoto repository site
 characterization, 535–543
tectonic stability, 534–535
Omori’s law, 47
 Onagawa nuclear power plant, 13
 ONKALO, 535
 Opalinus Clay, 530, 554
open-pit mine, 562
 ore deposit, 529
Osamu Utsumi uranium deposit, 557
oxygen fugacity, 202
Parícutin volcano, 85
Pärvie fault, 147
 Pacific Gas and Electric, 9
Paintbrush Canyon fault, 459
paleoenvironmental reconstruction, 124
paleoseismology, 259, 598
paletteshoreline, 122, 144
paleotsunami, 286–287
Pangea project, 549
Parricinato volcano, 85

Rhine Graben, 81
Rhine river, 554
Rhine/Scheldt delta, 512
rhyolite, 83, 188
rift, 35, 55, 81
Ring of Fire, 24, 81
rock
alteration, 466
deformation, 156, 169
mechanics, 541
Rokkasho nuclear fuel cycle center, 5, 509

Sakurajima volcano, 512
San Andreas fault, 9, 29, 37
San Carlos volcanic field, 202
San Francisco earthquake, 24
San Onofre nuclear power plant, 489
Santorini volcano, 86, 284
Satsop nuclear power plant, 597
scientific assessment, 606
scoria cone, 85, 459, 583
scour depth, 468
screening
criterion, 309
distance, see volcanic hazard
distance estimation, 235–251
sea-level
change, 548, 550
curve, 123
maximum rise, 513
seafloor spreading, 33
sector collapse, 281
sedimentation
coastal sites, 515–516
seiche, 585–586
Seihou-oki earthquake, 493
seismic
acceleration, 497
attenuation, 261, 496
catalog, 257
coupling, 598
design, 598
hazard map, 258
performance analysis, 264
profile, 183
reflection, 61, 184, 499
survey, 122
swarm, 88
tomography, 82, 104, 179, 311, 349, 371, 401
velocity model, 184
seismogenic source, 598
Sellafield nuclear reprocessing facility, 517
Senior Seismic Hazard Analysis Committee, 169, 595
Senya fault, 169
shallow-water wave velocity, 277
shear zone, 58, 529
shear-wave splitting, 187
shield volcano, 83–85
Shields number, 421
Shikoku basin, 308
shock
amplification, 413
tube experiment, 464
sidescan-sonar, 499
Sierra Blanca site, 488–489
sill, 89, 197, 398, 419, 461
site
descriptive model, 527, 530–534
investigation strategy, 527, 571
region, 347, 571
site-specific evaluation factor, 545
slab-rollback, 119
slickensides, 540
slope failure, 581–582
smoothed
asymptotic mean integrated squared error, 355
bootstrap, 346, 360
cross-validation, 355
Snake River Plain aquifer, 389
solidus, 79, 205, 408, 460
sorting, 238
Soufrière Hills volcano, 249
source geometry, 594
Southeast Crater Flat, 198
Southwest Nevada volcanic field, 455
Southwestern Compact, 487
sparse event data, 360–362
spatial
correlation, 378
density, 332, 346–348
density estimate, 348–350
distribution of volcanoes, 393–397, 401
intensity, 332, 347–348
statistics, 348
Speckle, 4
spent fuel, 552
spherical variogram model, 379
Spitak earthquake, 10
stationary, see non-stationary
statistical structure, 350
steady-state magma flow, 414
stick-slip, 159
stochastic
assessment of seismic hazard, 497
model, 369–370
point process, 343, 348, 370
Index

Stokes settling, 421
storm surge
 coastal sites, 515
strain, 41, 265
 areal, 167
 map, 266
 rate, 62–63, 157, 265
 residual, 161, 267
 stratigraphic correlation, 251
stream erosion, 553
stress
 differential, 51, 148
 rotation, 463
striation, 58
strike-slip fault, 27, 505
Stromboli
 landslide, 281
 volcano, 418
Strombolian eruption, 418, 466
strong motion, 261
structural contour map, 389
sub-Plinian eruption, 237
sub-sea disposal of radioactive waste, 550
subduction, 24, 81, 176–177
subsidence, 116, 548
 coastal sites, 517–518
 local, 119
 regional, 118–119
Sumatra-Andaman Islands earthquake, see Great Sumatran earthquake
Sumisu caldera, 186
surface wave, 30
Swiss Federal Nuclear Safety Inspectorate, 598
 syncline, 119

Taber caldera, 395
Taiwan earthquake, 484
Tambora volcano, 237
Tangshan earthquake, 39
 technical integrator, 596
tectonic plate
 major, 36, 158
 microplate, 36
 minor, 36
 speed, 158
 subplate, 36
tectono-magmatic setting, 385
tephra, 95, 200, 467
 density, 238
 deposit erosion, 246
 remobilization, 467
tephra fallout, 578–579
 hazard estimate, 235–245

TEPHRA2 computer code, 236
terrace aggradation, 61
Test Area North facility, 390
Test Reactors Area, 395
Texas Natural Resource Conservation Commission, 488
thermal
 erosion by magma, 414
 springs, 232
 subsidence, 313
thermochronology and estimation of uplift, 122
Thirsty Mesa basalt, 198
Three Sisters volcano, 104, 179
 thrust fault, 29, 504
 tilt, 267
Timber Mountain caldera, 198, 455
titanium drip shield, 454
Tohoku
 estimate of volcanic hazard, 380–381
 estimate of volcano spatial density, 374–380
 strain rate, 158
 tectonic hazard, 162–163, 257
 tectonic hazard assessment, 264–272
 volcanic arc, 82, 329
 volcano distribution, 311–313, 370
Tokachi-oki earthquake, 160, 164
Tokyo earthquake, 24
Tongariro volcano, 86
topographic
 barrier to flow, 249
 data, 498
 lineaments, 498
Torishima volcano, 178
total system performance assessment, see performance assessment
Tottori-ken Seibu earthquake, 13, 493
trace element geochemistry, 213–216
transform margin, 24
Trawsfynydd nuclear power plant, 361
trench,
 paleoseismic, 61
 paleoseismology, 500–502, 602
Trojan nuclear power plant, 78
tropical storm, 589
tsunami, 276
 bolide impact source, 285, 512
 causes, 278–285
 coastal sites, 513–515
 earthquake source, 279–281
 landslide source, 281–283
 meteorological, 279
 numerical model, 287–290
 volcano source, 97, 283–285, 585–586
 wavelength, 277
tunnel
 backfill, 554
magma flow in horizontal, 433
repository, 406, 464
turbidity current, 282
turbulent flow, 410
turning bands method, 373

Ubehebe maar, 351
UK earthquakes, spatial distribution of, 351–353
uncertainty, 252, 262, 358, 370, 484–487, 593
volcanic events, 570–571
uniform random distribution, 242, 353
Union of Concerned Scientists, 230
Uzen volcano, 97, 284
uplift, 116, 267, 548
 coastal sites, 517–518
 local, 117–118
 measuring rates of, 120–122
 regional, 117
uranium
 concentration in groundwater, 563
 concentration in surface water, 563
 ore deposit, 31, 556–557, 561
 weathering, 556
US Department of Energy, 196, 385, 452, 486, 595
US Nuclear Regulatory Commission, 17, 196, 230, 452, 595
US Nuclear Waste Technical Review Board, 484

vadose zone, 466
variogram, 376
Vatnajökull glacier, 143
vein, 57
vent, 467
 alignment, 350
 new, 101, 346, 374, 583–584
 ventilation shaft, 464
 very long baseline interferometry, 39
Vesuvius volcano, 24
vibratory ground motion, 481
violent Strombolian eruption, 466
viscosity, 52
 non-Newtonian, 88
viscous
 dissipation, 435
 force, 410
vitrified waste, 31
volcanic
 arc, 176, 307
 conduit, 87, 309, 461
 edifice, 329–331
 event, 327, 369, 456–457, 567
 field, 85, 386, 429, 457–461
 front, 310

 Index

gas, 585
plume, see eruption column
rift zone, 385
risk assessment framework, 455–456
volcanic hazard
 assessment methodology, 571
 distal, 94, 235
 guidelines for evaluation, 566–567
 proximal, 94, 235
 screening distance, 577–578
volcanism, plate tectonic setting, 80–83
volcano, 83
 active, 85–86, 567
 assessment of capability, 233–235
 cluster, 106, 179, 307, 310–311, 350, 370, 457
 definition of, 332–335
 dormant, 85, 234
 extinct, 85, 327
 formation of new, 85, 308, 327
 Holocene, 86, 567
 Holocene(?), 574
 monitoring, 102–105, 251
 stratigraphy, 385
 timespan of activity, 308
 volcanic deformation, 102
Volcano explosivity index, 91–92, 234
volcano seismology, 102
volcanic-tectonic earthquake, 233

Wadati–Benioff zone, 34
Wairarapa fault, 31
Ward Valley, 487
Waste Isolation Pilot Plant, 484
waste package, 454
 damage, 414, 465
 displacement by magma, 420
 thermal stress, 420
water runoff model, 246
wavelength
 geophysical anomalies, 178
topography, 134, 313–314
Weart, Wendell, 484
Wee, 6
Wegener, Alfred, 32
wehrlite, 218
Weibull–Poisson model, 369
Weichselian ice sheet, 150
Wellsen site, 552
wind velocity, 239
Windy Wash fault, 459
WISE calculator, 558
Worldwide Standardized Seismograph Network, 3
Wylfa nuclear power plant, 361
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>xenolith, 202, 218</td>
</tr>
<tr>
<td>Yellowstone caldera, 386</td>
</tr>
<tr>
<td>yield strength, 39, 47, 55, 88, 218</td>
</tr>
<tr>
<td>Yucca Mountain, 18, 78, 195, 598</td>
</tr>
<tr>
<td>GPS, 156</td>
</tr>
<tr>
<td>license application, 452</td>
</tr>
<tr>
<td>magmatic disruption, 406</td>
</tr>
<tr>
<td>natural barrier system, 484</td>
</tr>
<tr>
<td>probabilistic seismic hazard analysis, 598</td>
</tr>
<tr>
<td>probabilistic volcanic hazard assessment, 599–600</td>
</tr>
<tr>
<td>repository design, 431</td>
</tr>
<tr>
<td>tectonic hazards, 43</td>
</tr>
<tr>
<td>uncertainty in risk assessment, 486</td>
</tr>
<tr>
<td>volcanic risk assessment, 452</td>
</tr>
<tr>
<td>volcano distribution, 197–200, 347, 351</td>
</tr>
<tr>
<td>volcano recurrence rate, 369–370</td>
</tr>
<tr>
<td>zeolite, 454</td>
</tr>
</tbody>
</table>