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1

Foundations and algorithms

John Skilling

Why and how – simply – that’s what this chapter is about.

1.1 Rational inference

Rational inference is important. By helping us to understand our world, it gives us
the predictive power that underlies our technical civilization. We would not func-
tion without it. Even so, rational inference only tells us how to think. It does not
tell us what to think. For that, we still need the combination of creativity, insight,
artistry and experience that we call intelligence.

In science, perhaps especially in branches such as cosmology, now coming of
age, we invent models designed to make sense of data we have collected. It is no
accident that these models are formalized in mathematics. Mathematics is far and
away our most developed logical language, in which half a page of algebra can
make connections and predictions way beyond the precision of informal thought.
Indeed, one can hold the view that frameworks of logical connections are, by def-
inition, mathematics. Even here, though, we do not find absolute truth. We have
conditional implication: ‘If axiom, then theorem’ or, equivalently, ‘If not theorem,
then not axiom’. Neither do we find absolute truth in science.

Our question in science is not ‘Is this hypothetical model true?’, but ‘Is this
model better than the alternatives?’. We could not recognize absolute truth even
if we stumbled across it, for how could we tell? Conversely, we cannot recognize
absolute falsity. If we believe dogmatically enough in a particular view, then no
amount of contradictory data will convince us otherwise, if only because the data
could be dismissed as evidence of conspiracy to deceive. Yet even a determined
sceptic might be sufficiently charitable to acknowledge that a model with demon-
strable ability to predict future effects could have practical value.
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4 Foundations and algorithms

Let us, then, avoid the philosophical minefields of belief and truth, and pay at-
tention to what we really need, which is predictive ability. We anticipate the Sun
will rise tomorrow, not just because it always has done so far, but because this is
predicted by models of stellar structure and planetary dynamics, which accord so
well with such a variety of data that perceived failure of the Sun to rise might more
likely be hallucination.

Rational assessment of different models is the central subject of Bayesian meth-
ods, so called after Revd Thomas Bayes, the eighteenth century clergyman gener-
ally associated with the beginnings of formal probability theory. We will find that
probability calculus is forced upon us as the only method which lets us learn from
data irrespective of their order – surely a required symmetry. We will also discover
how to use it properly, with the aid of modern computers and algorithms. Inference
was held back for a century by technical inability to do the required sums, but that
sad era has closed.

1.2 Foundations

Suppose we are given a choice of basic models, a = apple, b = banana, c =
cherry, which purport to explain some data. Such models can be combined, so that
apple-OR-banana, written a ∨ b, is also meaningful. Data that excluded cherries
would, in fact, bring us down from the original apple-OR-banana-OR-cherry

combination to just that choice. With n basic models, there are 2n possible combi-
nations. They form the elements of a lattice, ranging from the absurdity in which
none of the models is allowed, up to the provisional truism in which all of them
remain allowed. In inference, we need to be able to navigate these possibilities as
we refine our knowledge.

a ∨ b ∨ c

a ∨ b a ∨ c b ∨ c
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The absurdity ∅ is introduced merely because analysis is cleaner with it than with-
out it, rather as 0 is often included with the positive integers.

The three core concepts of measure, information and probability all have wider
scope than inference alone. They apply to lattices in general, whether or not the
lattice fills out all 2n possibilities. By exposing just the foundation that we need,
and no more, we can allow wider application, as well as clarifying the basis so that
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1.2 Foundations 5

alternative formulations of these concepts become even less plausible than they
may have been before.

1.2.1 Lattices

The critical idea we need is ‘partial ordering’. We always have “=”: every element
equals itself, x = x. Sometimes, we have “<”, as in x < y, meaning that y includes
x. In inference, we say that apple is included in apple-OR-banana, because the
scope of the latter is wider and includes all of the former, but we would not try to
include apple within banana. We don’t need that particular motivation, though. All
we need is “<” in the abstract. Ordering is to be transitive,

x < y and y < z implies x < z, (1.1)

otherwise it would not make sense.
The other idea we need is ‘least upper bound’. The upper bounds to elements x

and y are those elements at or including both x and y. If there is a least such bound,
we write it as x ∨ y and call it the least upper bound:{

x ≤ x ∨ y

y ≤ x ∨ y

}
, and x ∨ y ≤ u for all u obeying

{
x ≤ u

y ≤ u

}
. (1.2)

In inference, the unique least upper bound x ∨ y is that element including all the
components of x and y, but no more. There, the existence of least upper bound is
obvious.

Technically, a lattice is a partially ordered set with least upper bound, so that “<”
and “∨” are defined. Any pair of elements x and y also has lower bounds, being all
those elements at or beneath both. There is a unique greatest lower bound, written
x ∧ y. (If there were alternatives u and v, then u ∨ v could be ambiguously x or
y, contradicting uniqueness of their least upper bound.) Mathematicians (Klain &
Rota 1997) traditionally define a lattice in terms of ∨ and ∧, but our use of <

and ∨ is equivalent, and (with =) underlies their traditional axioms of reflexivity,
antisymmetry, transitivity, idempotency, commutativity, associativity and absorp-
tion. Of these, the associativity property

(x ∨ y) ∨ z = x ∨ (y ∨ z) (1.3)

is of particular importance to us.
What we now seek is a numerical valuation v(x) on our lattice of models, so that

we can rank the possibilities. Remarkably, there is only one way of conforming to
lattice structure, and this leads us to measure theory, thence to information and
probability. Though modernized following Knuth (2003), the approach dates back
to Cox (1946, 1961).
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6 Foundations and algorithms

1.2.2 Measure

Addition

For a start, we want valuations to conform to “≤”, so we require

x ≤ y =⇒ v(x) ≤ v(y). (1.4)

Moreover, whatever our valuations were originally, we can shift them to give a
standard value 0 to the ubiquitous absurdity ∅, so that the range of value becomes
0 = v(∅) ≤ v(x).

We next assume that if x and y are disjoint, so that x ∧ y = ∅ and they have
nothing in common, then the valuation v(x ∨ y) should depend only on v(x) and
v(y). Write this relationship as a binary operation ⊕,

v(x ∨ y) = v(x) ⊕ v(y) when x ∧ y = ∅ . (1.5)

To conform with associativity (1.3), we require
(
v(x) ⊕ v(y)

) ⊕ v(z) = v(x) ⊕ (
v(y) ⊕ v(z)

)
. (1.6)

This has to hold for arbitrary values v(x), v(y), v(z), and the associativity theorem
(Azcél 2003) then tells us that there must be some invertable function F of our
valuations v such that

F
(
v(x ∨ y)

)
= F

(
v(x)

)
+ F

(
v(y)

)
. (1.7)

That being the case, we are free to discard the original valuations v and use m =
F (v) instead, for which ∨ is simple addition: for disjoint x and y we have the sum
rule

m(x ∨ y) = m(x) + m(y) (1.8)

In other words, valuation can without loss of generality be taken to be what math-
ematicians call a ‘measure’. They traditionally define measures from the outset as
additive over infinite sets, but offer little justification. Mathematicians just do it.
Physicists want to know why. Here we see that there’s no alternative, and although
we start finite we can extend to arbitrarily many elements; it is the same struc-
ture. This is why measure theory works – it is because of associativity – and we
physicists don’t have to worry about the infinite.

Assignment

As for actual numerical values, we can build them upwards by addition – except
for foundation elements that are not equal to any least upper bound of different
elements. Those values alone cannot be determined by the sum rule.
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1.2 Foundations 7

Thus, in the inference example, we can value an apple, a banana and a cherry
arbitrarily, but there is a scale on which combinations add. On that scale, if an ap-
ple costs 3c/ and a cherry costs 4c/, then their combination costs 3 + 4 = 7c/, not
32 + 42 = 25 or other non-linear construction. Associativity underlies money. Per-
sonal assignments may be on a different scale. In economics, for example, personal
benefit is sometimes held to be logarithmic in money, m = log($), to reflect the
asymmetry between devastating downside risk and comforting upside reward. On
that scale, money combines non-linearly, as log $(x ∨ y) = log $(x) + log $(y).
That’s permitted, the point being that there is a scale on which one’s numbers add.
Thus quantification is intrinsically linear – because of associativity.

In inference, ∨ behaves as logical OR and ∧ as logical AND, obeying the extra
property of distributivity:

(x OR y) AND z = (x AND z) OR (y AND z) ,

(x AND y) OR z = (x OR z) AND (y OR z) .
(1.9)

Equivalently, they behave as set union and set intersection of the foundation ele-
ments, which can therefore be assigned arbitrary values. In other applications, ∨
and ∧ might not be distributive, and the foundation assignments become restricted
by the non-equality of combinations that would otherwise be identical. But their
calculus would still be additive.

Multiplication

As well as by addition, measures can also combine by multiplication. Here, we
consider a direct product of lattices. For example, one lattice might have playing-
card foundation elements (♠, ♥, ♣, ♦) while the other has music-key foundations
(�, �, �). The direct-product lattice treats both together, here with 12 foundation
elements like ♥× � and 212 elements overall:

♠×�♥×�♣×�♦×�

♠×�♥×�♣×�♦×�

♠×�♥×�♣×�♦×�

=

♠ ♥ ♣ ♦

×
�

�

�

We now assume that the measure m(x×y) should depend only on m(x) and m(y).
Write this relationship as a binary operation

m(x × y) = m(x) ⊗ m(y). (1.10)

Now the direct-product operator is associative, (x × y) × z = x × (y × z),
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8 Foundations and algorithms
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so (
m(x) ⊗ m(y)

) ⊗ m(z) = m(x) ⊗ (
m(y) ⊗ m(z)

)
. (1.11)

This has to hold for arbitrary values m(x), m(y), m(z), and the associativity theo-
rem then tells us that there must be some invertable function Φ of the measures m

such that

Φ(m(x × y)) = Φ(m(x)) + Φ(m(y)). (1.12)

We cannot now re-grade to Φ(m) and ignore m because we have already fixed
the behaviour of m to be additive. What we can do is require consistency with
that behaviour by requiring the sum rule (1.8) to hold for composite elements,
m(x × t) + m(y × t) = m((x ∨ y) × t) for any t. The context theorem (Knuth
and Skilling, in preparation) then shows that Φ has to be logarithmic, so that

m(x × y) = m(x) m(y). (1.13)

While ⊕ is addition, ⊗ is multiplication. Combination is intrinsically multiplicative
– because of associativity. There is no alternative.

Commutativity

Technically, we have not used the commutative property x ∨ y = y ∨ x of a lattice.
However, the sum rule automatically generates values that are equal, v(x ∨ y) =
v(y ∨ x). So real valuations cannot capture non-commutative behaviour. Quantum
mechanics is an example, where states lack ordering so do not form a lattice, and
the calculus is complex. Inference is not an example. There, apple-OR-banana is
the same as banana-OR-apple so ∨ is commutative for us, and we are allowed to
use the real values that we need.

1.2.3 Information

Different measures can legitimately be assigned to the same foundation elements,
as when different individuals value apples, bananas and cherries differently. The
difference between source measure µ and destination measure m can be quantified,
consistently with lattice structure, as ‘information’ H(m | µ).

One way of deriving the form of H is as a variational potential, in which desti-
nation m is obtained at the extremal (minimum, actually) of H , subject to whatever
constraints require the change from µ. Suppose the playing-card example above has
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1.2 Foundations 9

source measure µ, with destination m obtained by some constraint on card suits.
Independently, the music-key example has source measure ν, with destination n

obtained by some constraint on music keys.
Equivalently, we must be able to analyze the problems jointly. Measures multi-

ply, so the joint element ‘card suit i and music key j’ has source measure µiνj and
destination minj . The latter is to be obtained at the extremal of H(minj | µiνj),
under one constraint acting on i and another on j. Temporarily suppressing the
fixed source µν, the variational equation for the destination measure is

H ′(minj) = λ1(i) + λ2(j), (1.14)

where the λ’s are the Lagrange multipliers of the i and j constraints. Writing x =
mi and y = nj , and differentiating ∂2/∂x∂y, the right-hand side is annihilated,
leaving

xyH ′′′(xy) + H ′′(xy) = 0, (1.15)

whose solution is

H(z) = A − Bz + Cz log z. (1.16)

Setting C = 1 an as arbitrary scale (positive to ensure a minimum), B = 1 to place
that minimum correctly at m = µ, and A = µ to make the minimum zero, we
reach (Skilling 1988)

H(m | µ) = µ − m + m log m
µ (1.17)

This obeys (1.14), so the potential we seek exists, and is required to be of this
unique form. The difference between measures plays a deep rôle in Bayesian
analysis.

1.2.4 Probability

Acquiring data involves a reduction of possibilities. Some outcomes that might have
happened, did not. In terms of the lattice of possibilities, the all-encompassing top
element moves down. To deal with this, we seek a bi-valuation p(x | t), in which
the context t of model x can shrink. Within any fixed context, p is to be a measure,
being non-negative and obeying the sum rule. But we want to change the numbers
when the context changes.

To find the dependence on context, take ordered elements x ≤ y ≤ z ≤ t. As
before, we require conformity with lattice ordering, here

x ≤ y ≤ z =⇒ p(x | z) ≤ p(x | y) (1.18)
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10 Foundations and algorithms

so that a wider context dilutes the numerical value. Ordering such as x ≤ z can be
carried out in two steps, x ≤ y and y ≤ z. Our bi-valuation should conform to this,
meaning that we require a “�” operator combining the two steps into one:

p(x | z) = p(x | y) � p(y | z). (1.19)

Extending this to three steps and considering passage p(x | t) from x to t, via y

and z, gives another associativity relationship,(
p(x | y) � p(y | z)

) � p(z | t) = p(x | y) � (
p(y | z) � p(z | t)

)
, (1.20)

representing (((x ≤ y) ≤ z) ≤ t) = (x ≤ (y ≤ (z ≤ t))). As before, this induces
some invertable function Φ of our valuations p such that

Φ
(
p(x | z)

)
= Φ

(
p(x | y)

)
+ Φ

(
p(y | z)

)
. (1.21)

Again, we require consistency with the sum rule p(x ∨ y | t) = p(x | t) + p(y | t)
for arbitrary context t. A variant of the context theorem (Knuth and Skilling, in
preparation) then shows that Φ has to be logarithmic as before, so � was multipli-
cation. Specifically, we recognize p as probability, hereafter “pr”,

0 = pr(∅) ≤ pr(x) ≤ pr(t) = 1 Range
pr(x ∨ y) = pr(x) + pr(y) Sum rule for disjoint x, y

pr(x ∧ y) = pr(x | y) pr(y) Product rule

⎫⎬
⎭ ‖ t (1.22)

(The “ ‖ t ” notation means that all probabilities are conditional on t, and avoids
proliferation of “ | t ” without introducing ambiguity.)

Just as measure theory was forced for valuations, so probability theory is forced
for bi-valuations. We need not be distracted by claimed alternatives because they
conflict with very general requirements. It is all very simple. There’s only this one
calculus for numerical bi-valuations on a lattice. If, say, we seek a calculus for
conditional beliefs, then this has to be it. But the calculus itself is abstract and
motive-free. We don’t have to subscribe to an undefined idea like ‘belief’ in order
to use it. In fact, the reverse holds. It is probability, with its defined properties, that
would underpin belief, not the other way round.

Most simply of all, probability calculus can be subsumed in the single definition
of probability as a ratio definition of measures:

pr(x | t) =
m(x ∧ t)

m(t) (1.23)

This is the original discredited frequentist definition, as the ratio of number of
successes to number of trials, now retrieved at an abstract level, which bypasses
the catastrophic difficulties of literal frequentism when faced with isolated non-
reproducible situations. The calculus of probability is no more than the calculus of
proportions.
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1.3 Inference 11

1.3 Inference

Henceforward, in accordance with traditional accounts, we take all foundation ele-
ments to be disjoint, and work in terms of these. The OR operator ∨ can be replaced
by the summation to which it reduces, while the AND operator ∧ can be written as
the traditional comma. It is also usual to use I for context, and allow the discrete
choice x to be continuous θ. The rules of probability calculus then reduce to

pr(θ) ≥ 0 Positivity∫
pr(θ) dθ = 1 Sum rule

pr(φ, θ) = pr(φ | θ) pr(θ) Product rule

⎫⎪⎬
⎪⎭ ‖ I (1.24)

1.3.1 Bayes’ theorem

In inference, we need to consider both parameter(s) θ and data D, all in the over-
arching context I of all possibilities we are currently considering. By the product
law, the joint probability of model and data factorizes:

pr(θ) pr(D | θ) = pr(θ, D) = pr(D) pr(θ | D) ‖ I

Prior × Likelihood = Joint = Evidence × Posterior
π(θ) L(θ) = · · · · · · = E P(θ)

Inputs =====⇒ Outputs

(1.25)

On the left lies the prior probability π(θ) = pr(θ | I), representing how we orig-
inally distributed the parameters’ unit mass of probability. This assignment has
provoked legendary argumentation, and we discuss it below. Also on the left is the
likelihood L(θ) = pr(D | θ), representing the probability distribution of the data
for each allowed input θ. This is less controversial. The instrument acquiring the
data can usually be calibrated with known inputs θ to find how often it produces
specific outputs D, which effectively fixes the likelihood to any desired precision.
If there remain any unknown calibration parameters in the likelihood, they can be
incorporated in θ as extra parameters to be determined, leading to extra computa-
tion but no difficulty of principle.

On the far right is the posterior P(θ) = pr(θ | D, I), representing our inferred
distribution of probability among the models, after using the data. The difference
between prior and posterior is the information (1.17)

H(P | π) =
∫

P(θ) log
(P(θ)/π(θ)

)
dθ (1.26)

gleaned about θ. Also on the right is the evidence E = pr(D | I), representing
how well our original assignments managed to predict the data. E is also known
as ‘prior predictive’ (how it is often used), ‘marginal likelihood’ (how it is often
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