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1

Multidimensional Data

Denken ist interessanter als Wissen, aber nicht als Anschauen (Johann Wolfgang von
Goethe, Werke – Hamburger Ausgabe Bd. 12, Maximen und Reflexionen, 1749–1832).
Thinking is more interesting than knowing, but not more interesting than looking at.

1.1 Multivariate and High-Dimensional Problems

Early in the twentieth century, scientists such as Pearson (1901), Hotelling (1933) and Fisher
(1936) developed methods for analysing multivariate data in order to

• understand the structure in the data and summarise it in simpler ways;
• understand the relationship of one part of the data to another part; and
• make decisions and inferences based on the data.

The early methods these scientists developed are linear; their conceptual simplicity and
elegance still strike us today as natural and surprisingly powerful. Principal Component
Analysis deals with the first topic in the preceding list, Canonical Correlation Analysis with
the second and Discriminant Analysis with the third. As time moved on, more complex
methods were developed, often arising in areas such as psychology, biology or economics,
but these linear methods have not lost their appeal. Indeed, as we have become more able
to collect and handle very large and high-dimensional data, renewed requirements for linear
methods have arisen. In these data sets essential structure can often be obscured by noise,
and it becomes vital to

reduce the original data in such a way that informative and interesting structure in the data
is preserved while noisy, irrelevant or purely random variables, dimensions or features
are removed, as these can adversely affect the analysis.

Principal Component Analysis, in particular, has become indispensable as a dimension-
reduction tool and is often used as a first step in a more comprehensive analysis.

The data we encounter in this book range from two-dimensional samples to samples that
have thousands of dimensions or consist of continuous functions. Traditionally one assumes
that the dimension d is small compared to the sample size n, and for the asymptotic theory,
n increases while the dimension remains constant. Many recent data sets do not fit into this
framework; we encounter
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4 Multidimensional Data

• data whose dimension is comparable to the sample size, and both are large;
• high-dimension low sample size (HDLSS) data whose dimension d vastly exceeds the

sample size n, so d� n; and
• functional data whose observations are functions.

High-dimensional and functional data pose special challenges, and their theoretical and
asymptotic treatment is an active area of research. Gaussian assumptions will often not be
useful for high-dimensional data. A deviation from normality does not affect the applicabil-
ity of Principal Component Analysis or Canonical Correlation Analysis; however, we need
to exercise care when making inferences based on Gaussian assumptions or when we want
to exploit the normal asymptotic theory.

The remainder of this chapter deals with a number of topics that are needed in subsequent
chapters. Section 1.2 looks at different ways of displaying or visualising data, Section 1.3
introduces notation for random vectors and data and Section 1.4 discusses Gaussian random
vectors and summarises results pertaining to such vectors and data. Finally, in Section 1.5
we find results from linear algebra, which deal with properties of matrices, including the
spectral decomposition. In this chapter, I state results without proof; the references I provide
for each topic contain proofs and more detail.

1.2 Visualisation

Before we analyse a set of data, it is important to look at it. Often we get useful clues such as
skewness, bi- or multi-modality, outliers, or distinct groupings; these influence or direct our
analysis. Graphical displays are exploratory data-analysis tools, which, if appropriately used,
can enhance our understanding of data. The insight obtained from graphical displays is more
subjective than quantitative; for most of us, however, visual cues are easier to understand
and interpret than numbers alone, and the knowledge gained from graphical displays can
complement more quantitative answers.

Throughout this book we use graphic displays extensively and typically in the examples.
In addition, in the introduction to non-Gaussian analysis, Section 9.1 of Part III, I illus-
trate with the simple graphical displays of Figure 9.1 the difference between interesting and
purely random or non-informative data.

1.2.1 Three-Dimensional Visualisation

Two-dimensional scatterplots are a natural – though limited – way of looking at data with
three or more variables. As the number of variables, and therefore the dimension, increases,
sequences of two-dimensional scatterplots become less feasible to interpret. We can, of
course, still display three of the d dimensions in scatterplots, but it is less clear how one
can look at more than three dimensions in a single plot.

We start with visualising three data dimensions. These arise as three-dimensional data or
as three specified variables of higher-dimensional data. Commonly the data are displayed
in a default view, but rotating the data can better reveal the structure of the data. The scat-
terplots in Figure 1.1 display the 10,000 observations and the three variables CD3, CD8
and CD4 of the five-dimensional HIV+ and HIV− data sets, which contain measurements
of blood cells relevant to HIV. The left panel shows the HIV+ data and the right panel the
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1.2 Visualisation 5
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Figure 1.1 HIV+data (left) and HIV−data (right) of Example 2.4 with variables CD3, CD8
and CD4.
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Figure 1.2 Orthogonal projections of the five-dimensional HIV+data (left) and the HIV−data
(right) of Example 2.4.

HIV− data. There are differences between the point clouds in the two figures, and an impor-
tant task in the analysis of such data is to exhibit and quantify the differences. The data are
described in Example 2.4 of Section 2.3.

It may be helpful to present the data in the form of movies or combine a series of different
views of the same data. Other possibilities include projecting the five-dimensional data onto
a smaller number of orthogonal directions and displaying the lower-dimensional projected
data as in Figure 1.2. These figures, again with HIV+ in the left panel and HIV− in the right
panel, highlight the cluster structure of the data in Figure 1.1. We can see a smaller fourth
cluster in the top right corner of the HIV− data, which seems to have almost disappeared in
the HIV+ data in the left panel.

We return to these figures in Section 2.4, where I explain how to find informative pro-
jections. Many of the methods we explore use projections: Principal Component Analysis,
Factor Analysis, Multidimensional Scaling, Independent Component Analysis and Projec-
tion Pursuit. In each case the projections focus on different aspects and properties of the
data.
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6 Multidimensional Data

5 6 7
234

2

4

6

5 6 7

2
3

4

0.5

1

1.5

2

2.5

5
6

7 246

0.5

1

1.5

2

2.5

2 3
4

246

0.5

1

1.5

2

2.5

Figure 1.3 Three species of the iris data: dimensions 1, 2 and 3 (top left), dimensions 1, 2 and 4
(top right), dimensions 1, 3 and 4 (bottom left) and dimensions 2, 3 and 4 (bottom right).

Another way of representing low-dimensional data is in a number of three-dimensional
scatterplots – as seen in Figure 1.3 – which make use of colour and different plotting symbols
to enhance interpretation. We display the four variables of Fisher’s iris data – sepal length,
sepal width, petal length and petal width – in a sequence of three-dimensional scatterplots.
The data consist of three species: red refers to Setosa, green to Versicolor and black to
Virginica. We can see that the red observations are well separated from the other two species
for all combinations of variables, whereas the green and black species are not as easily
separable. I describe the data in more detail in Example 4.1 of Section 4.3.2.

1.2.2 Parallel Coordinate Plots

As the dimension grows, three-dimensional scatterplots become less relevant, unless we
know that only some variables are important. An alternative, which allows us to see all
variables at once, is to follow Inselberg (1985) and to present the data in the form of parallel
coordinate plots. The idea is to present the data as two-dimensional graphs. Two different
versions of parallel coordinate plots are common. The main difference is an interchange of
the axes. In vertical parallel coordinate plots – see Figure 1.4 – the variable numbers are
represented as values on the y-axis. For a vector X = [X1, . . . , Xd ]T we represent the first
variable X1 by the point (X1,1) and the j th variable X j by (X j , j ). Finally, we connect the
d points by a line which goes from (X1,1) to (X2,2) and so on to (Xd ,d). We apply the same
rule to the next d-dimensional datum. Figure 1.4 shows a vertical parallel coordinate plot for
Fisher’s iris data. For easier visualisation, I have used the same colours for the three species
as in Figure 1.3, so red refers to the observations of species 1, green to those of species 2 and
black to those of species 3. The parallel coordinate plot of the iris data shows that the data
fall into two distinct groups – as we have also seen in Figure 1.3, but unlike the previous
figure it tells us that dimension 3 separates the two groups most strongly.
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1.2 Visualisation 7
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Figure 1.4 Iris data with variables represented on the y-axis and separate colours for the three
species as in Figure 1.3.
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Figure 1.5 Parallel coordinate view of the illicit drug market data of Example 2.14.

Instead of the three colours shown in the plot of the iris data, different colours can be used
for each observation, as in Figure 1.5. In a horizontal parallel coordinate plot, the x-axis
represents the variable numbers 1, . . . ,d . For a datum X = [X1 · · · Xd ]T, the first variable
gives rise to the point (1, X1) and the j th variable X j to ( j , X j ). The d points are connected
by a line, starting with (1, X1), then (2, X2), until we reach (d , Xd). Because we typically
identify variables with the x-axis, we will more often use horizontal parallel coordinate
plots. The differently coloured lines make it easier to trace particular observations.

Figure 1.5 shows the 66 monthly observations on 15 features or variables of the illicit drug
market data which I describe in Example 2.14 in Section 2.6.2. Each observation (month) is
displayed in a different colour. I have excluded two variables, as these have much higher val-
ues and would obscure the values of the remaining variables. Looking at variable 5, heroin
overdose, the question arises whether there could be two groups of observations correspond-
ing to the high and low values of this variable. The analyses of these data throughout the
book will allow us to look at this question in different ways and provide answers.
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8 Multidimensional Data

Interactive graphical displays and movies are also valuable visualisation tools. They are
beyond the scope of this book; I refer the interested reader to Wegman (1991) or Cook and
Swayne (2007).

1.3 Multivariate Random Vectors and Data

Random vectors are vector-valued functions defined on a sample space. We consider a single
random vector and collections of random vectors. For a single random vector we assume that
there is a model such as the first few moments or the distribution, or we might assume that
the random vector satisfies a ‘signal plus noise’ model. We are then interested in deriving
properties of the random vector under the model. This scenario is called the population
case.

For a collection of random vectors, we assume the vectors to be independent and iden-
tically distributed and to come from the same model, for example, have the same first and
second moments. Typically we do not know the true moments. We use the collection to
construct estimators for the moments, and we derive properties of the estimators. Such prop-
erties may include how ‘good’ an estimator is as the number of vectors in the collection
grows, or we may want to draw inferences about the appropriateness of the model. This
scenario is called the sample case, and we will refer to the collection of random vectors as
the data or the (random) sample.

In applications, specific values are measured for each of the random vectors in the collec-
tion. We call these values the realised or observed values of the data or simply the observed
data. The observed values are no longer random, and in this book we deal with the observed
data in examples only. If no ambiguity exists, I will often refer to the observed data as data
throughout an example.

Generally, I will treat the population case and the sample case separately and start with
the population. The distinction between the two scenarios is important, as we typically have
to switch from the population parameters, such as the mean, to the sample parameters, in
this case the sample mean. As a consequence, the definitions for the population and the data
are similar but not the same.

1.3.1 The Population Case

Let

X=

⎡⎢⎣X1
...
Xd

⎤⎥⎦
be a random vector from a distribution F :Rd → [0,1]. The individual Xj , with j ≤ d ,
are random variables, also called the variables, components or entries of X, and X is
d-dimensional or d-variate. We assume that X has a finite d-dimensional mean or expected
value EX and a finite d× d covariance matrix var (X). We write

μ= EX and � = var(X)= E

[
(X−μ)(X−μ)T

]
.
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1.3 Multivariate Random Vectors and Data 9

The entries of μ and � are

μ=

⎡⎢⎣μ1
...

μd

⎤⎥⎦ and � =

⎛⎜⎜⎜⎝
σ 2

1 σ12 · · · σ1d

σ21 σ 2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ 2
d

⎞⎟⎟⎟⎠ , (1.1)

where σ 2
j = var (X j ) and σ jk = cov(X j , Xk). More rarely, I write σ j j for the diagonal

elements σ 2
j of �.

Of primary interest in this book are the mean and covariance matrix of a random vector
rather than the underlying distribution F . We write

X∼ (μ,�) (1.2)

as shorthand for a random vector X which has mean μ and covariance matrix �.
If X is a d-dimensional random vector and A is a d× k matrix, for some k ≥ 1, then ATX

is a k-dimensional random vector. Result 1.1 lists properties of ATX.

Result 1.1 Let X∼ (μ,�) be a d-variate random vector. Let A and B be matrices of size
d× k and d× �, respectively.

1. The mean and covariance matrix of the k-variate random vector ATX are

ATX∼ (
AT
μ, AT

�A
)
. (1.3)

2. The random vectors ATX and BTX are uncorrelated if and only if AT
�B = 0k×�, where

0k×� is the k× n matrix all of whose entries are 0.

Both these results can be strengthened when X is Gaussian, as we shall see in Corollary 1.6.

1.3.2 The Random Sample Case

Let X1, . . . ,Xn be d-dimensional random vectors. Unless otherwise stated, we assume that
the Xi are independent and from the same distribution F :Rd → [0,1] with finite mean μ
and covariance matrix �. We omit reference to F when knowledge of the distribution is not
required.

In statistics one often identifies a random vector with its observed values and writes
Xi = xi . We explore properties of random samples but only encounter observed values of
random vectors in the examples. For this reason, I will typically write

X= [
X1 X2 · · ·Xn

]
, (1.4)

for the sample of independent random vectors Xi and call this collection a random sample
or data. I will use the same notation in the examples as it will be clear from the context
whether I refer to the random vectors or their observed values. If a clarification is necessary,
I will provide it. We also write

X=

⎡⎢⎢⎢⎣
X11 X21 · · · Xn1

X12 X22 · · · Xn2
...

...
. . .

...
X1d X2d · · · Xnd

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣

X•1

X•2
...

X•d

⎤⎥⎥⎥⎦ . (1.5)
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10 Multidimensional Data

The i th column of X is the i th random vector Xi , and the j th row X• j is the j th variable
across all n random vectors. Throughout this book the first subscript i in Xi j refers to the
i th vector Xi , and the second subscript j refers to the j th variable.

A Word of Caution. The data X are d×n matrices. This notation differs from that of some
authors who write data as an n× d matrix. I have chosen the d × n notation for one main
reason: The population random vector is regarded as a column vector, and it is therefore
more natural to regard the random vectors of the sample as column vectors. An important
consequence of this notation is the fact that the population and sample cases can be treated
the same way, and no additional transposes are required.1

For data, the mean μ and covariance matrix � are usually not known; instead, we work
with the sample mean X and the sample covariance matrix S and sometimes write

X∼ Sam(X, S) (1.6)

in order to emphasise that we refer to the sample quantities, where

X= 1

n

n

∑
i=1

Xi and (1.7)

S = 1

n− 1

n

∑
i=1

(Xi −X)(Xi −X)T. (1.8)

As before, X∼ (μ,�) refers to the data with population mean μ and covariance matrix �.
The sample mean and sample covariance matrix depend on the sample size n. If the depen-

dence on n is important, for example, in the asymptotic developments, I will write Sn instead
of S, but normally I will omit n for simplicity.

Definitions of the sample covariance matrix use n−1 or (n−1)−1 in the literature. I use the
(n−1)−1 version. This notation has the added advantage of being compatible with software
environments such as MATLAB and R.

Data are often centred. We write Xcent for the centred data and adopt the (unconventional)
notation

Xcent ≡X−X= [
X1−X . . . Xn−X

]
. (1.9)

The centred data are of size d× n. Using this notation, the d × d sample covariance matrix
S becomes

S = 1

n− 1

(
X−X

)(
X−X

)T
. (1.10)

In analogy with (1.1), the entries of the sample covariance matrix S are s jk , and

s jk = 1

n− 1

n

∑
i=1

(Xi j −m j )(Xik −mk), (1.11)

with X= [m1, . . . ,md]T, andm j is the sample mean of the j th variable. As for the population,
we write s2

j or s j j for the diagonal elements of S.

1 Consider a ∈Rd ; then the projection of X onto a is aTX. Similarly, the projection of the matrix X onto a is
done elementwise for each random vector Xi and results in the 1× n vector aTX. For the n× d matrix
notation, the projection of X onto a is XTa, and this notation differs from the population case.
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