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The physics of turbulence
E. Lévêque

Turbulence in fluids is a topic of great interest. First and foremost, most flows
in nature are turbulent and this is particularly true in the astrophysical context
(Kritsuk & Norman 2004). Also, turbulence leads to very peculiar mechanics
that still escapes to a great extent from our understanding. Since the pioneer-
ing works conducted by Osborne Reynolds at the end of the nineteenth century
(around 1895), turbulence in fluids has become a rich and challenging research
subject in which scientists from engineering, theoretical and experimental physics
have been involved with many different perspectives. There is no doubt that
bridging ideas from one field to another, and therefore stimulating new interdis-
ciplinary approaches, should provide a fruitful means of gaining understanding on
turbulence in the future.

In this chapter, the background physics of turbulence will be discussed spon-
taneously at a (very) basic level, i.e. without getting into details or precise
formulation. The discussion will be limited to incompressible hydrodynamics
governed by the Navier–Stokes (NS) equations. Firstly, general comments on tur-
bulence (as a statistical-mechanical problem) will be made. Then, I shall attempt
to provide some hints (rather than definite answers) to a series of questions: What
is generally the source of turbulence? What are the main statistical features of tur-
bulence? How to deal with turbulence? Much more elaborated developments and
references may be sought in the following books (among many others) dealing with
turbulence:

• a reference book on the physics of turbulence: A first course in turbulence by
H. Tennekes and J. L. Lumley, MIT Press, Cambridge, USA (1972)

• a reference book on turbulence as a statistical-mechanical problem: Turbulence: The
Legacy of A. N. Kolmogorov by U. Frisch, Cambridge University Press, Cambridge, UK
(1995)

• a reference textbook on the modelling of turbulence: Turbulent flows by S. Pope,
Cambridge University Press, Cambridge, UK (2000)
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4 The physics of turbulence

• a reference book on the numerical modelling of turbulence: Large-eddy simulation
for incompressible flows – An introduction by P. Sagaut, Springer-Verlag, Scientific
Computation series (2005).

1.1 General comments on turbulence

Turbulence is employed to label flows with the common characteristics of com-
plexity and disorder. Complexity refers to the complicated swirling motion of the
fluid, the ability to distort material fluid elements into complex convoluted geome-
tries. Disorder is related to this dynamics being random (or unpredictable). In
this respect, turbulence should be approached from the viewpoint of statistical
mechanics (Monin & Yaglom 1975).

Complexity in turbulence has to do with the essential non-linearity arising from
the advection term in the dynamical equations:

∂t u(x, t) + (u(x, t) · ∇) u(x, t) = forces by unit mass.

u(x, t) denotes the velocity field. By recasting this term in the Fourier space (and
assuming local homogeneity), one gets

∂t ûi (k, t) = −ik j

∑
p+q=k

ûi (p, t )̂u j (q, t) + ...,

where the summation is over all allowed wavevectors p and q. Thus, the time evo-
lution of mode k is a priori driven by the triadic interactions with all modes such
that p + q = k. A specific feature of turbulence (as a dynamical system) lies in the
impossibility to reduce this interaction to a restricted set of interacting modes p and
q. On the contrary, strong interactions with all triads of modes must be considered.
Furthermore, long-range (phase) coherency between Fourier modes is expected to
play an essential role; it is heuristically connected to the concentration of vorticity
into intense thin fluid structures such as vortex filaments (Figure 1.1).

Disorder in turbulence has to do with a strong departure from absolute statistical
equilibrium. From a theoretical viewpoint, the statistical problem of turbulence is
a priori well posed if at initial time t0 the mean velocity Ui (x, t0) and the two-point
correlation function

Ri j (x, t0; x′, t0) ≡ 〈ui (x, t0)u j (x′, t0)〉
are prescribed for all x and x′ and if it is assumed that the (multivariate) distri-
bution of the turbulent (fluctuating) velocity field ui (x, t0) is normal. However, at
times t > t0, it is observed that the multivariate distribution of ui (x, t) strongly
deviates from the normal distribution due to statistical correlations generated by
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1.2 What is the source of turbulence? 5

Fig. 1.1. Vortex filaments in a turbulent jet visualized by micro-bubbles. Courtesy
of Olivier Cadot, École nationale supérieure de techniques avancées, Paris.

the hydrodynamical forces. Analytically, this departure from the normal distribu-
tion is governed by the entire infinite sequence of statistical equations (deduced
from the NS equations) for all multi-point multi-time correlation functions

Ri jk...(x, t; x′, t ′; x′′, t ′′; ...) ≡ 〈ui (x, t)u j (x′, t ′)uk(x′′, t ′′)...〉.
An identified fundamental issue resides in finding an appropriate closure condi-
tion to convert this infinite hierarchy into a closed (low-dimensional) subset of
equations and eventually solve it.

In practice, turbulence is often investigated from a phenomenological standpoint,
i.e. starting from hypotheses motivated by experimental and numerical observa-
tions. This line of study has yielded very fruitful results during the past half century
and continues to expand nowadays (in absence of any successful statistical theory).

1.2 What is the source of turbulence?

Turbulence is generally triggered by the inhomogeneities of the flow (by the
mean velocity field not being uniform in space). Boundary conditions are often
responsible for such inhomogeneities (Figure 1.2).

In order to dissect this mechanism, let us consider the flow over a (solid) flat
plate. Because of the no-slip condition at the boundary, the velocity field neces-
sarily decreases to zero in the vicinity of the plate. This implies a strong gradient
of the mean velocity in the direction perpendicular to the plate. From kinematic
considerations, this strong gradient may be viewed as a vorticity sheet attached to
the plate. This sheet is generically unstable and generates streaky structures that
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6 The physics of turbulence

Fig. 1.2. Streamlines of a turbulent flow (from left to right) around an obstacle. It
appears that turbulence originates in the vicinity of the obstacle.

Streaky structures
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U: bulk velocity
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u |wall = 0

Turbulence
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Fig. 1.3. A solid boundary may be viewed as a source of vorticity which is
generically unstable, detaches from the boundary and sustains turbulence in the
bulk.

eventually detach, interact and contribute to sustain turbulence in the bulk of the
flow (Figure 1.3).

As rule of thumb, one may claim that a key ingredient involved in the gen-
eration of turbulence is the inhomogeneity of the mean flow, i.e. strong mean
velocity gradients, and the instability of these gradients. This mechanism also tells
us that it is important to learn about the mean flow before getting to the turbulent
fluctuations.
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1.3 What are the main statistical features of turbulence? 7

1.3 What are the main statistical features of turbulence?

This section is devoted to the statistical features of turbulent motions, usually
viewed as the net result of the interaction of a gas of turbulent eddies. By analogy
with a molecule, an eddy may be seen as a glob of fluid of a given size, or (spa-
tial) scale, that has a certain structure and life history of its own. This interaction
is unpredictable in detail; however, statistically distinct properties can be identi-
fied and profitably examined. The need for a statistical description arises from
both the intrinsic complexity of individual solutions and the instability of these
solutions to infinitesimal perturbations (in the initial and boundary conditions).
This makes it natural to examine ensemble of realizations rather than each individ-
ual realization and seek for robust statistical features insensitive to the details of
perturbations.

It is characteristic of turbulence that turbulent eddies are distributed over a wide
range of size scales and associated turn-over timescales. This range spreads from
the integral scale LS, which refers to the size of the largest eddies in the flow
(triggered by the inhomogeneities of the mean flow as seen previously), to the ele-
mentary scale η, which nails down the size of the smallest eddies. The macroscale
LS can be estimated by equalling the timescale related to the local mean veloc-
ity gradient, 1/‖∇U‖, and the turn-over time of the largest eddies, LS/u, where u
denotes the root-mean-squared turbulent velocity. Let us note that the norm of the
mean velocity gradient is often referred to as the shear in the literature, and LS is
called the shear length scale. The elementary microscale η is the viscous cut-off
scale. Formally, it is estimated by equalling the viscous timescale η2/ν, where ν is
the kinematic viscosity of the fluid, and the turn-over time of the smallest eddies.
This latter must be modelled (see p. 9).

The range of excited scales

LS ∼ u

‖∇U‖ ≥ r ≥ η

is called the inertial range. In that range, interactions between turbulent eddies
result in an effective transfer of kinetic energy from the large scales (comparable
to LS), where energy is fed into turbulence, to the small scales (comparable to η),
where this energy is dissipated by molecular viscosity. In 1941, Kolmogorov envis-
aged to describe this mechanism by a self-similar cascade of kinetic energy, which
is local in scale and in which all statistical information concerning the large scales
is lost (except for the mean energy-cascade rate ε). Kolmogorov’s theory yields the
celebrated universal law for the kinetic energy spectrum (in wavenumber k):

E(k) = Cε2/3k−5/3,
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8 The physics of turbulence

where C is a universal constant (Kolmogorov 1941). It is worth noting that this
law does not include any characteristic scale; this refers to the idea that the energy
cascade is a self-similar process in scale.

The Kolmogorov’s energy spectrum represents a form for the inertial range of
wavenumbers, in which energy is transferred from small to large wavenumbers by
the process of vortex stretching. Indeed, the chaotic nature of turbulence tends to
separate any two fluid elements initially near to each other. Consequently, there is
a tendency to stretch initial vorticity into ever-elongated and thinning structures,
until viscosity stops the thinning (Figure 1.4). By Kelvin’s theorem, if the cross
section of a vortex structure decreases under stretching, the fluid in the vortex
must spin faster. The combination of stretching and spin-up means a transfer of
energy from lower to higher wavenumbers. The viscous cut-off scale η, which
identifies the bottom scale of the energy cascade, is given (from dimensional
arguments) by

Rλ ~ 120

Fig. 1.4. Snapshot of high-enstrophy isosurfaces from a numerical simulation of
three-dimensional turbulence; the local enstrophy is defined by | 
∇ × 
u(
x, t)|2.
The swirling activity of the flow concentrates into very localized elongated and
thin fluid structures: the vortex filaments (E. Lévêque).
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1.3 What are the main statistical features of turbulence? 9

η =
(

ν3

ε

)1/4

.

A large body of experimental and numerical measurements corroborate the
Kolmogorov’s energy spectrum (Figure 1.5). However, higher-order statistical
correlations are not universal in the sense of Kolmogorov’s hypothesis. These dis-
crepancies are rooted in the fact that the cascade of energy is actually a highly
non-uniform process in space and time (Figure 1.6). This feature is usually referred
to as intermittency in the literature. From the viewpoint of statistical mechanics,
intermittency implies that the macroscopic parameter ε is not sufficient to char-
acterize the energy-cascade state of turbulence, but fluctuations of ε(x, t) should
be taken into account. Once Kolmogorov’s mean field theory is abandoned, a Pan-
dora’s box of possibilities is opened and a specific contact with the dynamics of
turbulence (solution of the NS equations) must be achieved. Current models have
not succeeded to establish this contact. They essentially rely on plausible hypothe-
ses but fail to relate themselves to the actual dynamics. More recent works attempt
to correlate turbulent high-order velocity correlations with the presence of highly
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Fig. 1.5. The density (in wavenumber k) of turbulent kinetic energy E(k) exhibits
a universal k−5/3 decrease (obtained from a laboratory experiment, courtesy
of C. Baudet and S. Ciliberto, ENS-Lyon, France) in agreement with the Kol-
mogorov’s theory. Turbulent motions are strongly damped by molecular viscosity
at very large wavenumbers. The energy is not equally distributed among Fourier
modes: E(k) ∼ k2 would be expected at statistical thermodynamic equilibrium.
Turbulence is a far-from-equilibrium system.
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10 The physics of turbulence
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Fig. 1.6. Slice of a snapshot of the energy-dissipation rate ε(x, t) obtained from
a numerical simulation of the NS equations (E. Lévêque). The magnitude of
ε(x, t) is represented by a grayscale bar ranging from 0 to 1. Energy dissipation
is concentrated on fine structures; it is not uniformly distributed.

coherent dynamical structures, the so-called She–Lévêque model (She & Lévêque
1994), for instance.

High-order multi-point correlations of turbulent velocity fluctuations are com-
monly investigated through the velocity structure functions, defined by

Sp(r) ≡ 〈|u(x, t) − u(x + r, t)|p
〉

for p = 1, 2, ... and the separation scale r within the inertial range. It is observed
both experimentally and numerically that the Sp(r)’s exhibit power-law scalings:

Sp(r) ∼ r ζp

and the scaling exponents ζp are found to be universal. The She–Lévêque model
relates the set of scaling exponents ζp to the presence of vortex filaments and yields
a formula without any adjustable parameter:

ζp = p

9
+ 2

[
1 −

(
2

3

)p/3
]

.

This model, which is found in very good agreement with experimental and numer-
ical data, establishes a concrete link between the dynamics and the statistics of
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1.4 How to deal with turbulence? 11

turbulence. Furthermore, its formulation is very general and can apply to a vast
class of turbulent systems. In astrophysics, it has been successfully employed to
relate the statistics to coherent dynamical structures in the interstellar medium, in
the solar wind or in cosmic rays.

1.4 How to deal with turbulence?

1.4.1 The Reynolds-averaged Navier–Stokes equations

How to account for turbulence in the mean flow? This fundamental question was
raised by Osborne Reynolds more than a century ago (Reynolds 1895) and remains
mostly open today.

In the turbulent regime, the mean flow is solution of the NS equations comple-
mented by a force which encompasses the exchange of momentum between the
mean flow and the turbulent agitation:

ρ
dUi

dt
= NS(U) − ρ

∂ui u j

∂x j
.

−ρui u j is termed the Reynolds stress (the overbar represents the statistical mean
value). These equations are commonly called the Reynolds-averaged Navier–
Stokes (RANS) equations. It is necessary to express the Reynolds stress in terms of
the mean velocity field in order to close the RANS equations.

1.4.1.1 The concept of turbulent viscosity

The idea behind the introduction of a turbulent viscosity is to treat the deviatoric
(traceless) part of the Reynolds stress like the viscous stress in a Newtonian fluid:

−ρui u j + 1

3
ρukuk δi j = 2ρνturbSi j ,

where νturb is the (kinematic) turbulent viscosity and Si j is the mean rate-of-strain
tensor (the symmetric part of the velocity gradient tensor). The turbulent viscosity
νturb(x, t) depends on the position x in the flow and time t ; it is a property of the flow
not of the fluid. The introduction of a turbulent viscosity relies on the hypothesis
of an internal friction (related to the turbulent agitation of the fluid) responsible for
the diffusive transport of momentum from the rapid to the slow mean-flow regions.

Dimensionally, νturb is equivalent to the product of a velocity and a length. This
suggests that (by analogy to the kinetic theory for gases)

νturb = u �,

where u and � would represent the characteristic velocity and length of the turbu-
lent agitation. In the mixing-length model, u and � are specified on the basis of the
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