Digital Signal Processing

This new, fully revised edition covers all the major topics of digital signal processing (DSP) design and analysis in a single, all-inclusive volume, interweaving theory with real-world examples and design trade-offs.

Building on the success of the original, this edition includes new material on random signal processing, a new chapter on spectral estimation, greatly expanded coverage of filter banks and wavelets, and new material on the solution of difference equations. Additional steps in mathematical derivations make them easier to follow, and an important new feature is the Do-it-Yourself section at the end of each chapter, where readers get hands-on experience of solving practical signal processing problems in a range of MATLAB[®] experiments.

With 120 worked examples, 20 case studies, and almost 400 homework exercises, the book is essential reading for anyone taking digital signal processing courses. Its unique blend of theory and real-world practical examples also makes it an ideal reference for practitioners.

Paulo S. R. Diniz is a Professor in the Department of Electronics and Computer Engineering at Poli/Federal University of Rio de Janeiro (UFRJ), and the Graduate Program of Electrical Engineering at COPPE/UFRJ. He is also a Fellow of the IEEE.

Eduardo A. B. da Silva is an Associate Professor in the Department of Electronics and Computer Engineering at Poli/UFRJ, and in the Graduate Program of Electrical Engineering at COPPE/UFRJ.

Sergio L. Netto is an Associate Professor in the Department of Electronics and Computer Engineering at Poli/UFRJ, and in the Graduate Program of Electrical Engineering at COPPE/UFRJ.

Digital Signal Processing System Analysis and Design

Second Edition

Paulo S. R. Diniz Eduardo A. B. da Silva and Sergio L. Netto Federal University of Rio de Janeiro

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521887755

© Cambridge University Press 2002, 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2002 Second edition 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Diniz, Paulo Sergio Ramirez, 1956– Digital signal processing : system analysis and design / Paulo S. R. Diniz, Eduardo A. B. da Silva, Sergio L. Netto. – 2nd ed. p. cm. Includes bibliographical references and index.

ISBN 978-0-521-88775-5 (hardback)

1. Signal processing-Digital techniques. I. Da Silva, Eduardo A. B. (Eduardo Antonio Barros), 1963-

II. Netto, Sergio L. (Sergio Lima), 1967- III. Title.

TK5102.9.D63 2010

621.382'2-dc22 2010024387

ISBN 978-0-521-88775-5 Hardback

Additional resources for this publication at www.cambridge.org/9780521887755

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

MATLAB is a registered trademark of MathWorks Inc.

> To our families, our parents, and our students.

Contents

Pr	reface			<i>page</i> xvi
	Intro	duction		1
1	Discr	ete-time	e signals and systems	5
	1.1	Introdu	action	5
	1.2	Discre	te-time signals	6
	1.3	Discre	te-time systems	10
		1.3.1	Linearity	10
		1.3.2	Time invariance	11
		1.3.3	Causality	11
		1.3.4	Impulse response and convolution sums	14
		1.3.5	Stability	16
	1.4	Differe	ence equations and time-domain response	17
		1.4.1	Recursive \times nonrecursive systems	21
	1.5	Solvin	g difference equations	22
		1.5.1	Computing impulse responses	31
	1.6	Sampl	ing of continuous-time signals	33
		1.6.1	Basic principles	34
		1.6.2	Sampling theorem	34
	1.7	Rando	m signals	53
		1.7.1	Random variable	54
		1.7.2	Random processes	58
		1.7.3	Filtering a random signal	60
	1.8	Do-it-y	yourself: discrete-time signals and systems	62
	1.9	Discre	te-time signals and systems with MATLAB	67
	1.10	Summ	ary	68
	1.11	Exerci	ses	68
2	The z	and Fo	urier transforms	75
	2.1	Introdu	uction	75
	2.2	Defini	tion of the z transform	76
	2.3	Inverse	e z transform	83
		2.3.1	Computation based on residue theorem	84
		2.3.2	Computation based on partial-fraction expansions	87
		2.3.3	Computation based on polynomial division	90

viii			Contents	
		234	Computation based on series expansion	92
	2.4	Propert	ies of the z transform	94
	2.1	2.4.1	Linearity	94
		2.4.2	Time reversal	94
		2.4.3	Time-shift theorem	95
		2.4.4	Multiplication by an exponential	95
		2.4.5	Complex differentiation	95
		2.4.6	Complex conjugation	96
		2.4.7	Real and imaginary sequences	97
		2.4.8	Initial-value theorem	97
		2.4.9	Convolution theorem	98
		2.4.10	Product of two sequences	98
		2.4.11	Parseval's theorem	100
		2.4.12	Table of basic <i>z</i> transforms	101
	2.5	Transfe	r functions	104
	2.6	Stabilit	y in the z domain	106
	2.7	Freque	ncy response	109
	2.8	Fourier	transform	115
	2.9	Propert	ies of the Fourier transform	120
		2.9.1	Linearity	120
		2.9.2	Time reversal	120
		2.9.3	Time-shift theorem	120
		2.9.4	Multiplication by a complex exponential (frequency shift,	120
		205	Complex differentiation	120
		2.9.5	Complex conjugation	120
		2.9.0	Real and imaginary sequences	121
		2.9.7	Symmetric and antisymmetric sequences	121
		2.9.0	Convolution theorem	122
		2.9.9	Product of two sequences	123
		2.9.10	Parseval's theorem	123
	2 10	Fourier	transform for periodic sequences	123
	2.10	Randon	n signals in the transform domain	125
	2.11	2 11 1	Power snectral density	125
		2.11.2	White noise	129
	2.12	Do-it-v	ourself: the z and Fourier transforms	129
	2.13	The z a	nd Fourier transforms with MATLAB	135
	2.14	Summa	rv	137
	2.15	Exercis	es	137
	3 Discre	ete trans	forms	143
	3.1	Introdu	ction	143
	3.2	Discret	e Fourier transform	144
	3.3	Propert	ies of the DFT	153

ix			Contents	
		3.3.1	Linearity	153
		3.3.2	Time reversal	153
		3.3.3	Time-shift theorem	153
		3.3.4	Circular frequency-shift theorem (modulation theorem)	156
		3.3.5	Circular convolution in time	157
		3.3.6	Correlation	158
		3.3.7	Complex conjugation	159
		3.3.8	Real and imaginary sequences	159
		3.3.9	Symmetric and antisymmetric sequences	160
		3.3.10	Parseval's theorem	162
		3.3.11	Relationship between the DFT and the z transform	163
	3.4	Digital	filtering using the DFT	164
		3.4.1	Linear and circular convolutions	164
		3.4.2	Overlap-and-add method	168
		3.4.3	Overlap-and-save method	171
	3.5	Fast Fo	urier transform	175
		3.5.1	Radix-2 algorithm with decimation in time	176
		3.5.2	Decimation in frequency	184
		3.5.3	Radix-4 algorithm	187
		3.5.4	Algorithms for arbitrary values of N	192
		3.5.5	Alternative techniques for determining the DFT	193
	3.6	Other d	iscrete transforms	194
		3.6.1	Discrete transforms and Parseval's theorem	195
		3.6.2	Discrete transforms and orthogonality	196
		3.6.3	Discrete cosine transform	199
		3.6.4	A family of sine and cosine transforms	203
		3.6.5	Discrete Hartley transform	205
		3.6.6	Hadamard transform	206
		3.6.7	Other important transforms	207
	3.7	Signal r	representations	208
		3.7.1	Laplace transform	208
		3.7.2	The <i>z</i> transform	208
		3.7.3	Fourier transform (continuous time)	209
		3.7.4	Fourier transform (discrete time)	209
		3.7.5	Fourier series	210
		3.7.6	Discrete Fourier transform	210
	3.8	Do-it-y	ourself: discrete transforms	211
	3.9	Discrete	e transforms with MATLAB	215
	3.10	Summa	ry	216
	3.11	Exercis	es	217
Z	1 Digita	al filters		222
	4.1	Introdu	ction	222
	4.2	Basic st	tructures of nonrecursive digital filters	222

x			Contents	
		4 2 1	Direct form	222
		4.2.1	Cascade form	223
		4.2.2		224
	4.2	4.2.3 Decide at	Linear-phase forms	223
	4.5		Direct former	232
		4.3.1	Direct forms	232
		4.3.2		230
	4 4	4.3.3 Disidal		237
	4.4	Digital		241
	4.5	State-sp	bace description	244
	4.6	Basic p	roperties of digital networks	246
		4.6.1	Tellegen's theorem	246
		4.6.2	Reciprocity	248
		4.6.3	Interreciprocity	249
		4.6.4	Transposition	249
		4.6.5	Sensitivity	250
	4.7	Useful	building blocks	257
		4.7.1	Second-order building blocks	257
		4.7.2	Digital oscillators	260
		4.7.3	Comb filter	261
	4.8	Do-it-y	ourself: digital filters	263
	4.9	Digital	filter forms with MATLAB	266
	4.10	Summa	ry	270
	4.11	Exercis	es	270
!	5 FIR fil	lter appr	oximations	277
	5.1	Introdu	ction	277
	5.2	Ideal ch	naracteristics of standard filters	277
		5.2.1	Lowpass, highpass, bandpass, and bandstop filters	278
		5.2.2	Differentiators	280
		5.2.3	Hilbert transformers	281
		5.2.4	Summary	283
	5.3	FIR filt	er approximation by frequency sampling	283
	5.4	FIR filt	er approximation with window functions	291
		5.4.1	Rectangular window	294
		5.4.2	Triangular windows	295
		5.4.3	Hamming and Hann windows	296
		5.4.4	Blackman window	297
		5.4.5	Kaiser window	299
		5.4.6	Dolph–Chebyshey window	306
	55	Maxim	ally flat FIR filter approximation	309
	5.5	FIR filt	er approximation by ontimization	313
	2.0	561	Weighted least-squares method	317
		562	Chebyshev method	317
		5.62	WIS Chebyshev method	321
		5.0.5		527

xi				Contents	
		5.7	Do-it-y	ourself: FIR filter approximations	333
		5.8	FIR filt	ter approximation with MATLAB	336
		5.9	Summa	ary	342
		5.10	Exercis	ses	343
	6	IIR fil	ter appr	oximations	349
		6.1	Introdu	iction	349
		6.2	Analog	filter approximations	350
			6.2.1	Analog filter specification	350
			6.2.2	Butterworth approximation	351
			6.2.3	Chebyshev approximation	353
			6.2.4	Elliptic approximation	356
			6.2.5	Frequency transformations	359
		6.3	Contin	uous-time to discrete-time transformations	368
			6.3.1	Impulse-invariance method	368
			6.3.2	Bilinear transformation method	372
		6.4	Freque	ncy transformation in the discrete-time domain	378
			6.4.1	Lowpass-to-lowpass transformation	379
			6.4.2	Lowpass-to-highpass transformation	380
			6.4.3	Lowpass-to-bandpass transformation	380
			6.4.4	Lowpass-to-bandstop transformation	381
			6.4.5	Variable-cutoff filter design	381
		6.5	Magnit	ude and phase approximation	382
			6.5.1	Basic principles	382
			6.5.2	Multivariable function minimization method	387
			6.5.3	Alternative methods	389
		66	Time-d	omain approximation	391
		0.0	661	Approximate approach	393
		67	Do-it-v	ourself: IIR filter approximations	394
		6.8	IIR filt	er approximation with MATLAB	399
		6.9	Summa	arv	403
		6.10	Exercis	Ses	404
	-	(val actio		400
	1	speci			409
		7.1	Introdu		409
		7.2	Estima	tion theory	410
		7.3	Nonpai	rametric spectral estimation	411
			7.3.1	Periodogram	411
			7.3.2	Periodogram variations	413
			7.3.3	Minimum-variance spectral estimator	416
		7.4	Modeli	ng theory	419
			7.4.1	Rational transfer-function models	419
			7.4.2	Yule–Walker equations	423

xii		Contents	
	7.5	Parametric spectral estimation	426
		7.5.1 Linear prediction	426
		7.5.2 Covariance method	430
		7.5.3 Autocorrelation method	431
		7.5.4 Levinson–Durbin algorithm	432
		7.5.5 Burg's method	434
		7.5.6 Relationship of the Levinson–Durbin algorithm to	
		a lattice structure	438
	7.6	Wiener filter	438
	7.7	Other methods for spectral estimation	441
	7.8	Do-it-yourself: spectral estimation	442
	7.9	Spectral estimation with MATLAB	449
	7.10	Summary	450
	7.11	Exercises	451
	8 Mult	tirate systems	455
	8.1	Introduction	455
	8.2 8.2	Designation	455
	0.5 8 4	Interpolation	450
	0.4	8 4 1 Examples of internolators	402
	8 5	Rational sampling-rate changes	465
	8.6	Inverse operations	466
	8.7	Noble identities	467
	8.8	Polyphase decompositions	469
	8.9	Commutator models	471
	8.10	Decimation and interpolation for efficient filter implementation	474
		8.10.1 Narrowband FIR filters	474
		8.10.2 Wideband FIR filters with narrow transition bands	477
	8.11	Overlapped block filtering	479
		8.11.1 Nonoverlapped case	480
		8.11.2 Overlapped input and output	483
		8.11.3 Fast convolution structure I	487
		8.11.4 Fast convolution structure II	487
	8.12	Random signals in multirate systems	490
		8.12.1 Interpolated random signals	491
		8.12.2 Decimated random signals	492
	8.13	Do-it-yourself: multirate systems	493
	8.14	Multirate systems with MATLAB	495
	8.15	Summary	497
	8.16	Exercises	498
	9 Filte	r banks	503
	9.1	Introduction	503
	9.2	Filter banks	503

xiii			Contents	
			9.2.1 Decimation of a bandpass signal	504
			9.2.2 Inverse decimation of a bandpass signal	505
			9.2.3 Critically decimated <i>M</i> -band filter banks	506
		9.3	Perfect reconstruction	507
			9.3.1 <i>M</i> -band filter banks in terms of polyphase components	507
			9.3.2 Perfect reconstruction <i>M</i> -band filter banks	509
		9.4	Analysis of <i>M</i> -band filter banks	517
			9.4.1 Modulation matrix representation	518
			9.4.2 Time-domain analysis	520
			9.4.3 Orthogonality and biorthogonality in filter banks	529
			9.4.4 Transmultiplexers	534
		9.5	General two-band perfect reconstruction filter banks	535
		9.6	QMF filter banks	540
		9.7	CQF filter banks	543
		9.8	Block transforms	548
		9.9	Cosine-modulated filter banks	554
			9.9.1 The optimization problem in the design of	550
		0.10	cosine-modulated filter banks	559
		9.10	Lapped transforms	503
			9.10.1 Fast algorithms and biorthogonal LOT	575
		0 11	Do it yourself: filter banks	581
		9.11	Filter banks with MATLAR	594
		9.12	Summary	594
		9.14	Exercises	595
	10	Wave	elet transforms	599
		10.1	Introduction	599
		10.2	Wavelet transforms	599
			10.2.1 Hierarchical filter banks	599
			10.2.2 Wavelets	601
			10.2.3 Scaling functions	605
		10.3	Relation between $x(t)$ and $x(n)$	606
		10.4	Wavelet transforms and time-frequency analysis	607
			10.4.1 The short-time Fourier transform	607
			10.4.2 The continuous-time wavelet transform	612
			10.4.3 Sampling the continuous-time wavelet transform:	
			the discrete wavelet transform	614
		10.5	Multiresolution representation	617
			10.5.1 Biorthogonal multiresolution representation	620
		10.6	Wavelet transforms and filter banks	623
			10.6.1 Relations between the filter coefficients	629
		10.7	Regularity	633
			10.7.1 Additional constraints imposed on the filter banks	
			due to the regularity condition	634

 10.7.2 A practical estimate of regularity 10.7.3 Number of vanishing moments 10.8 Examples of wavelets 	635 636 638
10.7.3 Number of vanishing moments10.8 Examples of wavelets	636 638
10.8 Examples of wavelets	638
10.9 Wavelet transforms of images	641
10.10 Wavelet transforms of finite-length signals	646
10.10.1 Periodic signal extension	646
10.10.2 Symmetric signal extensions	653
10.12 Wavelets with M_{ATIAB}	659
10.13 Summary	664
10.14 Exercises	665
11 Finite-precision digital signal processing	668
11.1 Introduction	668
11.2 Binary number representation	670
11.2.1 Fixed-point representations	670
11.2.2 Signed power-of-two representation	672
11.2.3 Floating-point representation	673
11.3 Basic elements	6/4
11.3.1 Properties of the two s-complement representation	674
11.3.2 Serial multiplier	676
11.3.4 Parallel adder	684
11.3.5 Parallel multiplier	684
11.4 Distributed arithmetic implementation	685
11.5 Product quantization	691
11.6 Signal scaling	697
11.7 Coefficient quantization	706
11.7.1 Deterministic sensitivity criterion	708
11.7.2 Statistical forecast of the wordlength	711
11.8 Limit cycles	715
11.8.1 Granular limit cycles	715
11.8.2 Overflow limit cycles	717
11.8.3 Elimination of zero-input limit cycles	719
11.8.4 Elimination of constant-input limit cycles	725
11.8.5 Forced-response stability of digital filters with	
nonlinearities due to overflow	729
11.9 Do-it-yourself: finite-precision digital signal processing	732
11.10 Finite-precision digital signal processing with MATLAB	735
11.11 Summary 11.12 Exercises	735 736
12 Efficient FIR structures	740
12.1 Introduction	740
12.2 Lattice form	740

xv		Contents	
		12.2.1 Filter banks using the lattice form	742
	12.3	Polyphase form	749
	12.4	Frequency-domain form	750
	12.5	Recursive running sum form	750
	12.6	Modified-sinc filter	752
	12.7	Realizations with reduced number of arithmetic operations	753
		12.7.1 Prefilter approach	753
		12.7.2 Interpolation approach	756
		12.7.3 Frequency-response masking approach	760
		12.7.4 Quadrature approach	771
	12.8	Do-it-yourself: efficient FIR structures	776
	12.9	Efficient FIR structures with MATLAB	781
	12.10	Summary	782
	12.11	Exercises	782
13	6 Efficie	ent IIR structures	787
	13.1	Introduction	787
	13.2	IIR parallel and cascade filters	787
		13.2.1 Parallel form	788
		13.2.2 Cascade form	790
		13.2.3 Error spectrum shaping	795
		13.2.4 Closed-form scaling	797
	13.3	State-space sections	800
		13.3.1 Optimal state-space sections	801
		13.3.2 State-space sections without limit cycles	806
	13.4	Lattice filters	815
	13.5	Doubly complementary filters	822
		13.5.1 QMF filter bank implementation	826
	13.6	Wave filters	828
		13.6.1 Motivation	829
		13.6.2 Wave elements	832
		13.6.3 Lattice wave digital filters	848
	13.7	Do-it-yourself: efficient IIR structures	855
	13.8	Efficient IIR structures with MATLAB	857
	13.9	Summary	857
	13.10	Exercises	858
Re	eferences	5	863
Inc	dex		877

Preface

This book originated from a training course for engineers at the research and development center of TELEBRAS, the former Brazilian telecommunications holding. That course was taught by the first author back in 1987, and its main goal was to present efficient digital filter design methods suitable for solving some of their engineering problems. Later on, this original text was used by the first author as the basic reference for the digital filters and digital signal processing courses of the Electrical Engineering Program at COPPE/Federal University of Rio de Janeiro.

For many years, former students asked why the original text was not transformed into a book, as it presented a very distinct view that they considered worth publishing. Among the numerous reasons not to attempt such task, we could mention that there were already a good number of well-written texts on the subject; also, after many years of teaching and researching on this topic, it seemed more interesting to follow other paths than the painful one of writing a book; finally, the original text was written in Portuguese and a mere translation of it into English would be a very tedious task.

In later years, the second and third authors, who had attended the signal processing courses using the original material, were continuously giving new ideas on how to proceed. That was when we decided to go through the task of completing and updating the original text, turning it into a modern textbook. The book then took on its first-edition form, updating the original text, and including a large amount of new material written for other courses taught by the three authors up to 2002.

This second edition barely resembles the original lecture notes for several reasons. The original material was heavily concentrated on filter design and realization, whereas the present version includes a large amount of material on discrete-time systems, discrete transforms, spectral estimation, multirate systems, filter banks, and wavelets.

This book is mainly written for use as a textbook on a digital signal processing course for undergraduate students who have had previous exposure to basic linear systems, or to serve as a textbook on a graduate-level course where the most advanced topics of some chapters are covered. This reflects the structure we have at the Federal University of Rio de Janeiro, as well as at a number of other universities we have contact with. The second edition has a special feature designed for readers to test their learning by hands-on experience through so-called Do-it-yourself sections, with the aid of MATLAB[®]. A Do-it-yourself section is included in all chapters of the book. The book also includes, at the end of most chapters, a brief section aimed at giving a start to the reader on how to use MATLAB as a tool for the analysis and design of digital signal processing systems. As in the first edition, we decided that having explanations about MATLAB inserted in the main text would in some cases distract the readers, making them lose focus on the subject.

xvii

Preface

A distinctive feature of this book is to present a wide range of topics in digital signal processing design and analysis in a concise and complete form, while allowing the reader to fully develop practical systems. Although this book is primarily intended as an undergraduate and graduate textbook, its origins on training courses for industry warrant its potential usefulness to engineers working in the development of signal processing systems. In fact, our objective is to equip the readers with the tools that enable them to understand why and how to use digital signal processing systems; to show them how to approximate a desired transfer function characteristic using polynomials and ratios of polynomials; to teach them why an appropriate mapping of a transfer function into a suitable structure is important for practical applications; and to show how to analyze, represent, and explore the trade-off between the time and frequency representations of deterministic and stochastic signals. For all that, each chapter includes a number of examples and end-of-chapter problems to be solved. These are aimed at assimilating the concepts, as well as complementing the text. In particular, the second edition includes many new examples and exercises to be solved.

Chapters 1 and 2 review the basic concepts of discrete-time signal processing and z transforms. Although many readers may be familiar with these subjects, they could benefit from reading these chapters, getting used to the notation and the authors' way of presenting the subject. In Chapter 1 we review the concepts of discrete-time systems, including the representation of discrete-time signals and systems, as well as their time-domain responses. Most important, we present the sampling theorem, which sets the conditions for the discrete-time systems to solve practical problems related to our real continuous-time world. The basic concepts of random signals are also introduced in this chapter, followed by the Do-it-yourself section aiding the reader to test their progress in discrete-time signals and systems. Chapter 2 is concerned with the z and Fourier transforms, which are useful mathematical tools for representation of discrete-time signals and systems. The basic properties of the z and Fourier transforms are discussed, including a stability test in the z transform domain. The chapter also shows how the analysis of random signals can benefit from the z-domain formulation.

Chapter 3 discusses discrete transforms, with special emphasis given to the discrete Fourier transform (DFT), which is an invaluable tool in the frequency analysis of discrete-time signals. The DFT allows a discrete representation of discrete-time signals in the frequency domain. Since the sequence representation is natural for digital computers, the DFT is a very powerful tool, because it enables us to manipulate frequency-domain information in the same way as we can manipulate the original sequences. The importance of the DFT is further increased by the fact that computationally efficient algorithms, the so-called fast Fourier transforms (FFTs), are available to compute the DFT. This chapter also presents real coefficient transforms, such as cosine and sine transforms, which are widely used in modern audio and video coding, as well as in a number of other applications. A discussion on the several forms of representing the signals, in order to aid the reader with the available choices.

Chapter 4 addresses the basic structures for mapping a transfer function into a digital filter. It is also devoted to some basic analysis methods and properties of digital filter structures. xviii

Preface

The chapter also introduces some simple and useful building blocks widely utilized in some designs and applications.

Chapter 5 introduces several approximation methods for filters with finite-duration impulse response (FIR), starting with the simpler frequency sampling method and the widely used windows method. This method also provides insight to the windowing strategy used in several signal processing applications. Other approximation methods included are the maximally flat filters and those based on the weighted least-squares (WLS) method. This chapter also presents the Chebyshev approximation based on a multivariable optimization algorithm called the Remez exchange method. This approach leads to linear-phase transfer functions with minimum order given a prescribed set of frequency response specifications. This chapter also discusses the WLS–Chebyshev method which leads to transfer functions where the maximum and the total energy of the approximation error are prescribed. This approximation method is not widely discussed in the open literature but appears to be very useful for a number of applications.

Chapter 6 discusses the approximation procedures for filters with infinite-duration impulse response (IIR). We start with the classical continuous-time transfer-function approximations, namely the Butterworth, Chebyshev, and elliptic approximations, that can generate discrete-time transfer functions by using appropriate transformations. Two transformation methods are then presented: the impulse-invariance and the bilinear transformation methods. The chapter also includes a section on frequency transformations in the discrete-time domain. The simultaneous magnitude and phase approximation of IIR digital filters using optimization techniques is also included, providing a tool to design transfer functions satisfying more general specifications. The chapter closes by addressing the issue of time-domain approximations.

Chapter 7 introduces the basic concepts of classical estimation theory. It starts by describing the nonparametric spectral estimation methods based on a periodogram, followed by the minimum-variance spectral estimator. The chapter continues with a discussion on modeling theory, addressing the rational transfer function models and presenting the Yule–Walker equations. Several parametric spectral estimation methods are also presented, namely: the linear prediction method; the covariance method; the autocorrelation method; the Levinson– Durbin algorithm; and Burg's method. The chapter also discusses the Wiener filter as an extension of the linear prediction method.

Chapter 8 deals with basic principles of discrete-time systems with multiple sampling rates. In this chapter we emphasize the basic properties of multirate systems, thoroughly addressing the decimation and interpolation operations, giving examples of their use for efficient digital filter design. The chapter discusses many key properties of multirate systems, such as inverse operations and noble identities, and introduces some analytical tools, such as polyphase decomposition and the commutator models. In addition, we discuss the concepts of overlapped block filtering, which can be very useful in some fast implementations of digital signal processing building blocks. The chapter also includes some discussion on how decimators and interpolators affect the properties of random signals.

Chapter 9 discusses some properties pertaining to the internal structure of filter banks, followed by the concept and construction of perfect reconstruction filter banks. The chapter also xix

Preface

includes some analysis tools and classifications for the filter banks and transmultiplexers. This chapter presents several design techniques for multirate filter banks, including several forms of two-band filter banks, cosine-modulated filter banks, and lapped transforms.

Chapter 10 introduces the concepts of time-frequency analysis and the discrete wavelet transform. It also presents the multiresolution representation of signals through wavelet transforms and discusses the design of wavelet transforms using filter banks. In addition, some design techniques to generate orthogonal (as well as biorthogonal) bases for signal representation are presented. Several properties of wavelets required for their classification, design, and implementation are discussed in this chapter.

Chapter 11 provides a brief introduction to the binary number representations most widely used in the implementation of digital signal processing systems. The chapter also explains how the basic elements utilized in these systems work and discusses a particular, and yet instructive, type of implementation based on distributed arithmetic. Chapter 11 also includes the models that account for quantization effects in digital filters. We discuss several approaches to analyze and deal with the effects of representing signals and filter coefficients with finite wordlength. In particular, we study the effects of quantization noise in products, signal scaling that limits the internal signal dynamic range, coefficient quantization in the designed transfer function, and the nonlinear oscillations which may occur in recursive realizations. These analyses are used to indicate the filter realizations that lead to practical finite-precision implementations of digital filters.

In Chapter 12 we present some techniques to reduce the computational complexity of FIR filters with demanding specifications or specialized requirements. The first structure discussed is the lattice form, which finds application in a number of areas, including the design of filter banks. Several useful implementation forms of FIR filters, such as polyphase, frequency-domain, recursive running sum, and modified-sinc forms, are presented to be employed as building blocks in several design methods. In particular, we introduce the prefilter and interpolation methods which are mainly useful in designing narrowband lowpass and highpass filters. In addition, we present the frequency-response masking approach, for designing filters with narrow transition bands satisfying more general specifications, and the quadrature method, for narrow bandpass and bandstop filters.

Chapter 13 presents a number of efficient realizations for IIR filters. For these filters, a number of realizations considered efficient from the finite-precision effects point of view are presented and their salient features are discussed in detail. These realizations will equip the reader with a number of choices for the design of good IIR filters. Several families of structures are considered in this chapter, namely: parallel and cascade designs using direct-form second-order sections; parallel and cascade designs using section-optimal and limit-cycle-free state-space sections; lattice filters; and several forms of wave digital filters. In addition, this chapter includes a discussion on doubly complementary filters and their use in the implementation of quadrature mirror filter banks.

This book contains enough material for an undergraduate course on digital signal processing and a first-year graduate course. There are many alternative ways to compose these courses; in the following we describe some recommendations that have been employed successfully in signal processing courses.

хх	Preface
	 An undergraduate course in discrete-time systems or digital signal processing at junior level. This should include most parts of Chapters 1, 2, 3, 4, and the nonparametric methods of Chapter 7. It could also include the noniterative approximation methods of Chapters 5 and 6, namely the frequency sampling and window methods described in Chapter 5, the analog-based approximation methods, and also the continuous-time to discrete-time transformation methods for IIR filtering of Chapter 6. An undergraduate course in digital signal processing at senior level. This should briefly review parts of Chapters 1 and 2 and cover Chapters 3, 4, and 7. It could also include the noniterative approximation methods of Chapters 5 and 6, namely the frequency sampling and window methods described in Chapter 5, the analog-based approximation methods of Chapters 5 and 6, namely the frequency sampling and window methods described in Chapter 5, the analog-based approximation methods, and also the continuous-time to discrete-time transformation methods for IIR filtering of Chapter 6. Chapters 8 and 11 could complement the course. An undergraduate course in digital filtering at senior level or first-year graduate. This should cover Chapter 4 and the iterative approximation methods of Chapters 5 and 6. The course could also cover selected topics from Chapters 11, 12, and 13. At the instructor's discretion, the course textbook on multirate systems, filter banks and wavelets. The course could cover Chapters 8, 9, and 10, as well as the lattice form in Chapter 12 and doubly complementary filters in Chapter 13.
	Obviously, there are several other choices for courses based on the material of this book which will depend on the course length and the judicious choice of the instructor. This book would never be written if people with a wide vision of how an academic environment should be were not around. In fact, we were fortunate to have Professors L. P. Calôba and E. H. Watanabe as colleagues and advisors. The staff of COPPE, in particular Ms Michelle A. Nogueira and Ms F. J. Ribeiro, supported us in all possible ways to make this book a reality. Also, the first author's early students J. C. Cabezas, R. G. Lins, and J. A. B. Pereira (in memoriam) wrote, with him, a computer package that generated several of the examples of the first edition of this book. The engineers of CPqD helped us to correct the early version of this text. In particular, we would like to thank the engineer J. Sampaio for his complete trust in this work. We benefited from working in an environment with a large signal-processing group where our colleagues always helped us in various ways. Among them, we should mention Professors L. W. P. Biscainho, M. L. R. de Campos, G. V. Mendonça, A. C. M. de Queiroz, F. G. V. de Resende Jr, J. M. de Seixas, and the entire staff of the Signal Processing Lab (www.lps.ufrj.br). Professor Biscainho superbly translated the first edition of this book to our mother tongue; he is indeed our inspirational fourth author. We would like to thank our colleagues at the Federal University of Rio de Janeiro, in particular at the Department of Electronics and Computer Engineering of the Polytechnic School of Engineering, the undergraduate studies department, and at the Electrical Engineering Program of COPPE, the graduate studies department, for their constant support during the preparation of this book.

we would like to thank many triends from other institutions whose influence helped in shaping this book. In particular, we may mention Professor A. S. de la Vega of Fluminense Federal University; Professor M. Sarcinelli Filho of the Federal University of Espírito ххі

Preface

Santo; Professors P. Agathoklis, A. Antoniou, and W.-S. Lu of the University of Victoria; Professors I. Hartimo and T. I. Laakso and Dr. V. Välimäki of the Helsinki University of Technology; Professors T. Saramäki and Markku Renfors of the Tampere University of Technology; Professor Y. Lian of the National University of Singapore; Professor Y. C. Lim of Nanyang Technological University; Dr. R. L. de Queiroz of the University of Brasília; Dr. H. S. Malvar of Microsoft Corporation; Professor Y.-F. Huang of the University of Notre Dame; Professor J. E. Cousseau of Univerdad Nacional del Sur; Professor B. Nowrouzian of University of Alberta; Dr. M. G. de Siqueira of Cisco Systems; Professors R. Miscow Filho and E. Viegas of the Military Institute of Engineering in Rio de Janeiro; Professor T. Q. Nguyen of the University of California, San Diego; and Professor Massimiliano Laddomada of Texas A&M University, Texarkana.

This acknowledgment list would be incomplete without mentioning the staff of Cambridge University Press, in particular our editor, Dr. Philip Meyler. Phil is an amazing person who knows how to stimulate people to write and read books.

We would like to thank our families for their endless patience and support. In particular, Paulo would like to express his deepest gratitude to Mariza, Paula, and Luiza, and to his mother Hirlene. Eduardo would like to mention that the continuing love and friendship from his wife Cláudia and his children Luis Eduardo and Isabella, as well as the strong and loving background provided by his parents, Zélia and Bismarck, were in all respects essential to the completion of this task. Sergio would like to express his deepest gratitude to his parents, "Big" Sergio and Maria Christina, his sincere love and admiration to his wife, Isabela, and the greatest affection to his offspring, Bruno and the twins, Renata and Manuela (see Figure 10.21). We all would also like to thank our families for bearing with us working together.

We sincerely hope that the book reflects the harmony, pleasure, friendship, and tenderness that we experience working together. Our partnership was written in the stars and heaven sent.