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Introduction

1.1 Some common integral transforms

Transform techniques have become familiar to recent generations of undergraduates
in various areas of mathematics, science, and engineering. The principal integral
transform that is perhaps best known is the Fourier transform. The jump from the
time domain to the frequency domain is a characteristic feature of a number of impor-
tant instrumental methods that are routinely employed in many university science
departments and industrial laboratories. Fourier transform nuclear magnetic reso-
nance spectroscopy (acronym FTNMR) and Fourier transform infrared spectroscopy
(FTIR) are two extremely significant techniques where the Fourier transform method-
ology finds important application. Two transforms derived from the Fourier transform,
the Fourier sine and Fourier cosine transforms, also find wide application. The Laplace
transform is often encountered fairly early in the undergraduate mathematics cur-
riculum, because of its utility in aiding the solution of certain types of elementary
differential equations. The transforms that bear the names of Abel, Cauchy, Mellin,
Hankel, Hartley, Hilbert, Radon, Stieltjes, and some more modern inventions, such
as the wavelet transform, are much less well known, tending to be the working tools
of specialists in various areas. The focus of this work is about the Hilbert transform.
In the course of discussing the Hilbert transform, connections with some of the other
transforms will be encountered, including the Fourier transform, the Fourier sine
and Fourier cosine offspring, and the Hartley, Laplace, Stieltjes, Mellin, and Cauchy
transforms. The Z-transform is studied as a prelude to a discussion of the discrete
Hilbert transform.

In this chapter the principal objective is to provide a non-rigorous introduction to
the Hilbert transform, and to establish the idea of the Hilbert transform operator. Some
brief historical comments are presented on the emergence of the Hilbert transform.
Finally, some areas are given where the Hilbert transform finds application.

1.2 Definition of the Hilbert transform

Many of the common integral transforms can be written in the following form:

g(x) =
∫ b

a
k(x, y)f ( y)dy, (1.1)
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2 Introduction

where k(x, y) is called the kernel function, or just the kernel of the equation. Equa-
tion (1.1) can also be thought of as an example of an integral equation, if one
desires to determine the function f in terms of g. More specifically, it is termed
a Fredholm equation of the first kind. The limits on the integral can be finite or
infinite. When the kernel function has a singularity in the integration range, it is
possible in a number of cases to extend the definition of the integral in Eq. (1.1)
to accommodate these cases. Such equations are referred to as singular integral
equations.

The Hilbert transform on R, the real line, is defined by

Hf (x) = 1

π
P

∫ ∞

−∞
f ( y)dy

x − y
, for x ∈ R. (1.2)

The kernel function in this definition is given by

k(x, y) = 1

π(x − y)
, (1.3)

which is singular when y = x. The symbol P
∫

denotes an extension of the normal
definition of the integral called the Cauchy principal value. This is discussed in detail
in Chapter 2. The integral becomes well behaved for many common functions if an
infinitesimally small section of the integration interval centered at the singularity
y = x is deleted, as part of the definition of the integral. This is the essential effect of
evaluating the integral as a principal value integral.

A word on notation may be useful at this juncture. Commonly, f is used to denote
a function of a single variable and f (x) is the value of the function evaluated at the
point x. It is prevalent in the sciences to use the notation f (x) to denote the function
and also the value of the function evaluated at the point x. Usually the context makes
it clear which of the two meanings is intended, although the use of f or f ( ) for
the function, and f (x) for the value of the function evaluated at the point x, makes
the meaning much clearer. The interpretation of Eq. (1.2) is that Hf signifies a new
function and Hf (x) is the value of this function evaluated at the point x. The notation
Hf is used when there is no need to specify the point at which the transform is
evaluated, which is convenient in a number of cases, particularly where additional
operators such as the Fourier or inverse Fourier transform operator are also being
applied to the function f . Occasionally the notation H [ ] or H{ } is employed; this
is expedient when the Hilbert transform of a product of functions is taken, but the
notation is not used exclusively for this purpose. In this book the notation H [ f (x)]
or H { f (x)} is employed with some frequency as a shorthand for H [ f (t)](x). In the
latter form, t is the dummy integration variable for the Hilbert transform, and the
function Hf is evaluated at the point x. Occasionally the notation H [ f , x] is used
in the literature to denote the Hilbert transform of the function f evaluated at the
point x. Sometimes, mostly by mathematicians, the Hilbert transform of the function
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1.2 Definition of the Hilbert transform 3

f is denoted by f̃ . In the literature, the symbol T is also employed to denote the
Hilbert transform. In this book, T is used to denote the finite Hilbert transform.
When no confusion is likely, operator identities involving H are written with no
function specified, and it is assumed that functions can be found for which the operator
equality holds.

Historically, Eq. (1.2) was not the definition given by David Hilbert. Working in
the area of integral equations, he arrived at a pair of integral equations connecting
the real and imaginary parts of a function analytic in the unit disc, leading to the
definition of the Hilbert transform for the circle (Hilbert, 1904, 1912). The transform
appearing in Eq. (1.2) seems to have been first discussed with some level of rigor by
the cricket loving English mathematician G. H. Hardy (1902, 1908), and named by
him in 1924 the Hilbert transform, in honor of Hilbert’s contribution. It is perhaps
interesting to speculate how this transform might have been named by later workers
had Hardy not graciously named the transform as he did. In a sense, Alfred Tauber’s
contribution (Tauber, 1891) appears to have been overlooked. In hindsight, perhaps
the transform should bear the names of the three aforementioned authors. Most of the
early developments on the Hilbert transform were not performed by David Hilbert,
but by Hardy (1924a, 1924b, 1932) and Titchmarsh (1925a, 1929, 1930a, 1930b).
A related form was given by Young (1912). Variants of the Hilbert transform on R

are presented in later chapters; these include the Hilbert transform for the circle, the
finite Hilbert transform, the multi-dimensional Hilbert transform, the discrete Hilbert
transform, and others.

The reader is alerted to the existence of an alternative definition of the Hilbert
transform for the real line, one where the kernel k(x, y) = {π( y − x)}−1 is employed.
Unfortunately, a consensus agreement on the definition has not been reached, and
both forms occur rather commonly in the literature, though the definition given in
Eq. (1.2) appears to be increasingly favored. For a number of purposes this difference
in sign is not important, but obviously is significant for the evaluation of the Hilbert
transform of a particular function, which means that the reader needs to be alert to the
sign choice when pulling entries from tables of Hilbert transforms. Occasionally the
Hilbert transform is defined with the factor π−1 omitted. Employing the definition
given in Eq. (1.2) does have the advantage that factors of π that would frequently
appear are incorporated into the definition of the Hilbert transform. A few authors
define the Hilbert transform with the imaginary unit factor included, that is, π−1 is
replaced by (π i)−1.

Note that nothing has been said about what conditions must be specified for the
function f in order that the integral in Eq. (1.2) exists. Different levels of rigor can be
brought to bear on this question. For almost all applications in the physical sciences,
the existence of the Riemann integral of the function | f |2 over the interval (−∞, ∞) is
all that is required to guarantee that the Hilbert transform of f is bounded. The Hilbert
transform can be defined for a wider class of functions than the aforementioned, and
this is addressed in Chapter 3.
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4 Introduction

1.3 The Hilbert transform as an operator

The key idea in the application of any of the simple integral transforms is that the
function f is acted on by an “integral operator,” to yield a new function, g, which
is referred to as the “name” transform of f . In the case of the Hilbert transform, the
integral operation is given by

H ≡ 1

π
P

∫ ∞

−∞
ds

( ) − s
, (1.4)

where the identity of the function and the point at which the Hilbert transform is
evaluated are left unspecified. The Hilbert transform of f can be thought of as the
application of the integral operator in Eq. (1.4) on the function f ( ), to yield

Hf ( ) = 1

π
P

∫ ∞

−∞
ds

( ) − s
f (s), (1.5)

and the left-hand side of Eq. (1.5) is frequently denoted by the function g( ). Clearly,
the function g depends on the entire shape of f . In other words, g at some point
x, g(x), is not determined simply by the value of the function f evaluated at the
same point. That is, g has a non-local dependence on f . The situation where g(x)
is determined directly by the value f (x) arises when there is a simple functional
connection between f and g; for example, suppose g(x) = sin[ f (x)], then the value
of g at the point x depends only on the value of f evaluated at x. This notion has
important consequences. A function f could be zero over a large region of the real
axis and finite for a small region, but its Hilbert transform could be everywhere
non-zero. Applications will be encountered later that reflect this type of behavior.

To visualize the changes that take place when the Hilbert transform of a function
is evaluated, consider the following choice:

f (x) = a

a2 + x2
, (1.6)

where a is a real positive constant. This functional form appears in several diverse
applications, and is sometimes referred to as a Cauchy pulse, and in other applications
is closely related to the Lorentzian profile. The Hilbert transform of this function is
given by

g(x) = Hf (x) = x

a2 + x2
. (1.7)

Figure 1.1 shows a plot of f (x) and its Hilbert transform for the value a = 1.
The particular methods that are most effective for evaluating this relatively straight-

forward Hilbert transform are discussed in Chapter 2 and illustrated with examples
in Chapters 3 and 4.

The function f of the preceding example can be recovered from g using the
expression f (x) = −Hg(x). In fact, this is a rather general result. The two formulas
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1.3 The Hilbert transform as an operator 5

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

–10

21 x

x
Hf(x)

+
=

21

1

x
f (x)

+
=

–8 –6 –4 –2 0 2 4 6 8 10

Figure 1.1. Plot of the Cauchy pulse and its Hilbert transform.

g(x) = Hf (x) and f (x) = −Hg(x) constitute a Hilbert transform pair. This Hilbert
transform pair is explored in detail in later chapters, and it is shown that there is a very
close connection with the theory of analytic functions. Pairs of functions that satisfy
this type of skew-reciprocal character have been known for a considerable time. For
example, the results (for a > 0)

1

π
P

∫ ∞

−∞
sin as ds

x − s
= −cos ax (1.8)

and

1

π
P

∫ ∞

−∞
cos as ds

x − s
= sin ax (1.9)

were given well over one hundred years ago (Schlömilch, 1848 p. 153; Bierens de
Haan, 1867). The sine and cosine functions thus form a Hilbert transform pair.

Hardy (1908, 1924a, 1924b, 1928a, 1932) was one of those who pioneered the
study of the mathematical foundations of the Hilbert transform. Prior to Hilbert’s
publications, Hardy (1902) had investigated the properties of Cauchy principal value
integrals, and, in particular, he derived the preceding two formulas. Let I(x, a) denote
the following integral:

I(x, a) = 1

π
P

∫ ∞

−∞
sin as ds

x − s
, (1.10)

where a is a constant. From the preceding formula, Hardy obtained the following
differential equation:

d2I

dx2
+ a2I = 0. (1.11)
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6 Introduction

The topic of differentiation of the Hilbert transform is discussed in detail later. The
solution of Eq. (1.11) is

I(x, a) = α cos ax + β sin ax, (1.12)

where α and β are arbitrary constants. Setting x = 0 and using the result

1

π

∫ ∞

−∞
sin as ds

s
= sgn a, (1.13)

where

sgn a =
⎧⎨
⎩

1, a > 0
0, a = 0

−1, a < 0
(1.14)

gives α = −sgn a. It is straightforward to show that I(x, a) = −I(−x, −a), from
which it follows that β = 0, and hence

I(x, a) = −sgn a cos ax. (1.15)

Hardy (1902) gave this result for the case a > 0, and he also gave a result equivalent
to Eq. (1.9).

1.4 Diversity of applications of the Hilbert transform

Historically, work on Hilbert transforms developed on three main fronts. Mathemati-
cians made the seminal developments in the first quarter of the twentieth century by
putting the Hilbert transform into various useful forms, and established a number
of key theorems that turned out to be of critical importance for future developments
in the physical sciences. Hilbert transforms arose first in potential theory. Around
the time of the dawn of modern quantum theory, Kramers (1926, 1927) and, working
independently, Kronig (1926) obtained the reciprocal relations between the frequency
dependent refractive index and the absorption coefficient of a medium. The result-
ing equations involved principal value integrals over the frequency interval [0, ∞),
which can be recast as a pair of standard Hilbert transforms. These equations became
known in the physics and chemistry literature as the Kramers–Kronig relations.
In parallel with this development, electrical engineers applied the same and some
closely related mathematical ideas in circuit analysis (Carson, 1926). The real and
imaginary parts of the general complex impedance were found to be connected
to each other by Hilbert transforms. These relations are sometimes referred to as
the Bode relations (Bode, 1945). In branches of engineering the Hilbert trans-
forms are sometimes referred to as Wiener–Lee transforms (Papoulis, 1962, p. 192).
In modern signal processing the terms 90◦ phase shift filter or quadrature filter are
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1.4 Diversity of applications 7

also employed to describe a Hilbert transform. The former of these two designations
comes from the fact that the Hilbert transform of a sine function yields a cosine
function, and this can be recast as a sine function with a shift of the argument by
90◦. Somewhat later, with activity rising significantly in the early 1960s, Hilbert
transforms found important applications in the study of various scattering processes
in elementary particle physics and some other branches of physics. The key equa-
tions developed to describe the scattering processes are called dispersion relations,
which are, in many cases, Hilbert transform relations or relatively minor extensions of
the Hilbert transform concept. The Hilbert transform technique has clearly acquired
multiple names as it has been employed in different applications. This multiplicity
of names makes it more difficult to assess the true impact of Hilbert’s contribu-
tion to transform calculus in the physical sciences. In addition to Hilbert, perhaps
it is not inappropriate to give due credit to the nineteenth century mathematicians
Poisson and, in particular, Cauchy, whose contributions laid the foundations for the
work of Hilbert and others on the transform that finds such a diverse number of
applications.

The question of why one should be interested in studying the theory of Hilbert
transforms can be best answered in the following manner. There are numerous prac-
tical applications of Hilbert transforms, such as those mentioned in the preceding
paragraph. To that list of applications can be added problems in aerofoil theory,
crack formation in materials, aspects of the theory of elasticity, applications in wave
propagation theory, problems in potential theory, and the study of dispersion forces.
Further applications arise in certain areas in digital signal processing, and problems
in the reconstruction of images. Readers with an interest in the stock market might
be fascinated to see how a discrete version of the Hilbert transform has been used
as a modeling tool (Ehlers, 2001). For some of these topics, the Hilbert transform
or some variant of the standard form occurs as part of an integral equation or of an
integro-differential equation. An example that is discussed later is the study of soli-
tary waves. Because of the rich and diverse array of applications, the study of Hilbert
transform theory can be a rewarding exercise.

Hilbert transform theory of course finds a number of applications in pure mathe-
matics. The theory of the conventional Hilbert transform can be viewed as a paradigm
for the mathematical investigation of singular integrals in general. This opens up a
whole area of study in singular integral equations. Hilbert transform theory has served
as a springboard to the study of singular integrals in n-dimensional Euclidean space.
The Hilbert transform has played an important role in addressing some fundamental
questions in the theory of Fourier series. This transform has a very close connection
to some areas of complex analysis, and it plays an essential role in the theory of
Fourier transforms of causal functions. The Hilbert transform is the key ingredient
in characterizing operators that commute with the translation and dilation operators.
Parts of all of the aforementioned topics are discussed in an introductory fashion in
the following chapters.
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8 Introduction

Notes

The end-notes for each chapter provide sources, both books and journal articles, where
additional reading on various topics may be pursued. The books that are recommended
on standard topics reflect in large part the contents of the author’s personal library. On
many standard topics, particularly the background material covered in Chapter 2, the
reader should be able to find a large number of additional reference texts beyond the
ones cited. For a delightful account of the life and times of David Hilbert, intended
for a general audience, see Reid (1996).

§1.1 For further reading on integral equations, consult Gakhov (1966), Hochstadt
(1973), Tricomi (1985), Mikhlin and Prössdorf (1986), Pipkin (1991), Muskhel-
ishvili (1992), and Kress (1999). Good sources on integral transforms with an applied
emphasis include Sneddon (1972) and Davies (1978). The books by Zayed (1996)
and Debnath and Bhatta (2007), and the individual accounts in Poularikas (1996a),
are highly recommended reading.
§1.2 Hardy’s work referenced in this book can be found in the seven volumes of
his collected papers, Hardy (1966).
§1.3 Additional Hilbert transform pairs can be found in the nineteenth century lit-
erature; see, for example, Schlömilch (1848) or Bierens de Haan (1867). For some
more recent collections of Hilbert transforms, see the following: Erdélyi et al. (1954,
Vol. II), MacDonald and Brachman (1956), Smith and Lyness (1969), Alavi-Sereshki
and Prabhakar (1972), and Hahn (1996a, 1996b). Hilbert transform relations of
the type given in Eqs. (1.8) and (1.9) are due to the great French mathematician
Augustin-Louis Cauchy.
§1.4 Some further reading on various applications of the Hilbert transform can be
found in: Tricomi (1985, p. 173) and Zayed (1996, p. 287) for aerofoil theory; Wright
and Hutchinson (1999) for the determination of oscillator phases for atomic motions;
Ferry (1970), Booij and Thoone (1982), Madych (1990), and Herdman and Turi
(1991), for elasticity theory; Aki and Richards (1980, p. 852) for crack propagation;
Hinojosa and Mickus (2002) for the study of gravity gradient profiles; Červený and
Zahradník (1975) for a review of geophysical applications; Weaver and Pao (1981),
Beltzer (1983), and Bampi and Zordan (1992), for wave propagation theory; Duffin
(1972), Nabighian (1984), and Sugiyama (1992), for aspects of potential theory;
Sakai and Vanasse (1966) for an application in Fourier spectroscopy; Karl (1989),
Hahn (1996a, 1996b), Oppenheim, Schafer, and Buck, (1999), for signal processing;
and Lowenthal and Belvaux (1967), Herman (1980), Kohlmann (1996), Arnison
et al. (2000), Davis, McNamara, and Cottrell (2000), and Shaik and Iftekharuddin
(2003), for image reconstruction theory. Astudy of dispersion forces using dispersion
theoretic techniques can be found in Feinberg, Sucher, and Au (1989). A number
of applications have been made in Raman spectroscopy; see Chinsky et al. (1982),
Stallard et al. (1983), Patapoff, Turpin, and Peticolis (1986), and Lee and Yeo (1994).
For the development of a dispersion-type relation for the ground-state energy of two-
electron atomic systems as a function of nuclear charge, see Ivanov and Dubau (1998).
For further general reading on matters mathematical, see Butzer and Trebels (1968),
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Exercises 9

Butzer and Nessel (1971), and Pandey (1996). A concise introductory account on the
Hilbert transform can be found in Peters (1995).

Exercises

The table of Hilbert transforms in Appendix 1 should prove to be of value to you,
both for checking the answers to a number of exercises throughout the book, and for
solving some of the exercises.

1.1 Given

I(x, a) = 1

π
P

∫ ∞

−∞
cos as ds

x − s
,

where a is a constant, set up a differential equation by differentiation with respect
to x, and hence determine the value for I(x, a). Justify the differentiation step.

1.2 Given

P
∫ ∞

−∞
f (s)ds = lim

ε→0+

{∫ x−ε

−∞
f (s)ds +

∫ ∞

x+ε

f (s)ds

}
,

show for

f (s) = (x − s)−1 that P
∫ ∞

−∞
f (s)ds = 0.

1.3 What is the value of
∫ ∞
−∞ ds/(x − s)?

1.4 Show that Hf (x) equals −a/(x2 + a2) for f (s) = s/(a2 + s2), where a is a
positive constant. Hint: The identity

s

(s2 + a2)(x − s)
= 1

x2 + a2

{
x

x − s
+ xs

s2 + a2
− a2

s2 + a2

}

leads to a straightforward calculation.
1.5 Show that Hf (x) equals x/a(x2 + a2) for f (s) = 1/a2 + s2, where a is a posi-

tive constant. Hint: The identity

1

(s2 + a2)(x − s)
= 1

x2 + a2

{
x

s2 + a2
+ 1

x − s
+ s

s2 + a2

}

simplifies the calculation.
1.6 If c is a constant, evaluate H [c].
1.7 Evaluate H [sin(ax + b)], where a and b are real constants.
1.8 Evaluate H [cos(ax + b)], where a and b are real constants.
1.9 Evaluate H [sin2(αx)], where α is a real constant.

1.10 If α is a real constant, does H [x−1 sin(αx)] converge?
1.11 For α a real constant, determine whether H [x−1 cos(αx)] converges.
1.12 Prove Eq. (1.13).
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10 Introduction

1.13 For f (x) = x(x2 + α2)−1 with α a real constant greater than zero, how does Hf
behave as α → 0+?

1.14 If

f (x) =
{

0, x < 0
e−α x, x ≥ 0

with α > 0,

evaluate Hf (x).

1.15 If f (x) =
{

0, |x| > 1
1, |x| ≤ 1

, evaluate Hf (x).

1.16 For a > 0, is the statement H [x2(a2 + x2)−1] = −ax (a2 + x2)−1, true or false?

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88762-5 - Hilbert Transforms, Volume 1
Frederick W. King
Excerpt
More information

http://www.cambridge.org/9780521887625
http://www.cambridge.org
http://www.cambridge.org

