Contents

Acknowledgements
page x

Introduction
1
 - What is this book?
 - What this book is not
 - Get started
 - Short history of geodynamics and numerical geodynamic modelling
 - A few words about programming and visualisation
 - How to use this book
 - Programming exercises and homework

1 The continuity equation
11
 - Continuum – what is it?
 - Continuity equation
 - Eulerian and Lagrangian points – what is the difference?
 - Derivation of the Eulerian continuity equation
 - Derivation of the Lagrangian continuity equation
 - Comparing Eulerian and Lagrangian continuity equations. Advective transport term
 - Incompressible continuity equation
 - Analytical exercise
 - Programming exercise and homework

2 Density and gravity
25
 - Density of rocks and minerals. Equations of state
 - Gravity and gravitational potential
 - Analytical exercise
 - Programming exercises and homework

© in this web service Cambridge University Press
www.cambridge.org
Table of Contents

3 Numerical solutions of partial differential equations 37
- 3.1 Finite-difference method 37
- 3.2 Solving linear equations 43
- 3.3 Geometrical and global indexing of unknowns 47
 Programming exercises and homework 48

4 Stress and strain 51
- 4.1 Stress 51
- 4.2 Strain and strain rate 56
 Analytical exercise 59
 Programming exercise and homework 60

5 The momentum equation 61
- 5.1 Momentum equation 61
- 5.2 Newtonian law of viscous friction 64
- 5.3 Navier–Stokes equation 65
- 5.4 Poisson equation 68
- 5.5 Stream function approach 69
 Analytical exercise 71
 Programming exercise and homework 71

6 Viscous rheology of rocks 73
- 6.1 Rock rheology 73
- 6.2 Effective viscosity 74
- 6.3 Non-Newtonian channel flow 79
 Programming exercises and homework 80

7 Numerical solutions of the momentum and continuity equations 83
- 7.1 Grids 83
- 7.2 Discretisation of the equations 86
- 7.3 Conservative finite differences 87
- 7.4 Boundary conditions 92
- 7.5 Indexing of unknowns 95
 Programming exercises and homework 101

8 The advection equation and marker-in-cell method 105
- 8.1 Advection equation 105
- 8.2 Eulerian advection methods 106
- 8.3 Marker-in-cell techniques 113
 Programming exercises and homework 119

9 The heat conservation equation 123
- 9.1 Fourier's law of heat conduction 123
- 9.2 Heat conservation equation 124
- 9.3 Heat generation and consumption 127
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Simplified temperature equations</td>
<td>128</td>
</tr>
<tr>
<td>9.5</td>
<td>Heat diffusion timescales</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Analytical exercises</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Programming exercises and homework</td>
<td>131</td>
</tr>
<tr>
<td>10</td>
<td>Numerical solution of the heat conservation equation</td>
<td>133</td>
</tr>
<tr>
<td>10.1</td>
<td>Explicit and implicit formulation of the temperature equation</td>
<td>133</td>
</tr>
<tr>
<td>10.2</td>
<td>Conservative finite differences</td>
<td>135</td>
</tr>
<tr>
<td>10.3</td>
<td>Advection of temperature with Eulerian methods</td>
<td>140</td>
</tr>
<tr>
<td>10.4</td>
<td>Advection of temperature with markers</td>
<td>141</td>
</tr>
<tr>
<td>10.5</td>
<td>Thermal boundary conditions</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Programming exercises and homework</td>
<td>146</td>
</tr>
<tr>
<td>11</td>
<td>2D thermomechanical code structure</td>
<td>149</td>
</tr>
<tr>
<td>11.1</td>
<td>What do we expect from geodynamic codes?</td>
<td>149</td>
</tr>
<tr>
<td>11.2</td>
<td>Thermomechanical code structure</td>
<td>150</td>
</tr>
<tr>
<td>11.3</td>
<td>Adding self-gravity and free surface</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Programming exercise and homework</td>
<td>163</td>
</tr>
<tr>
<td>12</td>
<td>Elasticity and plasticity</td>
<td>165</td>
</tr>
<tr>
<td>12.1</td>
<td>Why care about elasticity and plasticity?</td>
<td>165</td>
</tr>
<tr>
<td>12.2</td>
<td>Elastic rheology</td>
<td>165</td>
</tr>
<tr>
<td>12.3</td>
<td>Rotation of elastic stresses</td>
<td>168</td>
</tr>
<tr>
<td>12.4</td>
<td>Maxwell visco-elastic rheology</td>
<td>172</td>
</tr>
<tr>
<td>12.5</td>
<td>Plastic rheology</td>
<td>173</td>
</tr>
<tr>
<td>12.6</td>
<td>Visco-elasto-plastic rheology</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Analytical exercise</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Programming exercises and homework</td>
<td>177</td>
</tr>
<tr>
<td>13</td>
<td>2D implementation of visco-elasto-plastic rheology</td>
<td>179</td>
</tr>
<tr>
<td>13.1</td>
<td>Viscous-like reformulation of visco-elasto-plasticity</td>
<td>179</td>
</tr>
<tr>
<td>13.2</td>
<td>Structure of visco-elasto-plastic thermomechanical code</td>
<td>180</td>
</tr>
<tr>
<td>13.3</td>
<td>Visco-elasto-plastic iterations</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Programming exercises and homework</td>
<td>191</td>
</tr>
<tr>
<td>14</td>
<td>The multigrid method</td>
<td>193</td>
</tr>
<tr>
<td>14.1</td>
<td>Multigrid – what is it?</td>
<td>193</td>
</tr>
<tr>
<td>14.2</td>
<td>Solving the Poisson equation with multigrid</td>
<td>200</td>
</tr>
<tr>
<td>14.3</td>
<td>Solving Stokes and continuity equations with multigrid</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Programming exercises and homework</td>
<td>217</td>
</tr>
<tr>
<td>15</td>
<td>Programming of 3D problems</td>
<td>221</td>
</tr>
<tr>
<td>15.1</td>
<td>Why simply not always 3D?</td>
<td>221</td>
</tr>
</tbody>
</table>
Contents

15.2 3D staggered grid and discretisation of momentum, continuity, temperature and Poisson equations 222

15.3 Solving discretised 3D equations 231
Programming exercises and homework 239

16 Numerical benchmarks 241
16.1 Code benchmarking: why should we spend time on it? 241
16.2 Test 1. Rayleigh–Taylor instability benchmark 242
16.3 Test 2. Falling block benchmark 244
16.4 Test 3. Channel flow with a non-Newtonian rheology 246
16.5 Test 4. Non-steady temperature distribution in a Newtonian channel 247
16.6 Test 5. Couette flow with viscous heating 250
16.7 Test 6. Advection of sharp temperature fronts 253
16.8 Test 7. Channel flow with variable thermal conductivity 253
16.9 Test 8. Thermal convection with constant and variable viscosity 255
16.10 Test 9. Stress build-up in a visco-elastic Maxwell body 260
16.11 Test 10. Recovery of the original shape of an elastic slab 261
16.12 Test 11. Numerical sandbox benchmark 263
16.13 Possible further benchmarks 267
Programming exercises and homework 267

17 Design of 2D numerical geodynamic models 269
17.1 Warning message! 269
17.2 What is numerical modelling all about? 269
17.3 Material properties 270
17.4 Visco-elasto-plastic slab bending 271
17.5 Retreating oceanic subduction 276
17.6 Lithospheric extension 279
17.7 Continental collision 282
17.8 Slab breakoff 287
17.9 Intrusion emplacement into the crust 291
17.10 Mantle convection with phase changes 296
17.11 Deformation of self-gravitating planetary body 301
Programming exercise and homework 306

Epilogue: outlook 307
 Where are we now? 307
 Where to go further? 307
 State-of-the-art overview 311
 Efficient direct solvers 312
 Parallelisation of numerical codes 313
Contents

Mesh refinement algorithms .. 313
Including complex realistic physics in numerical geodynamic models ... 314
3D visualisation challenges ... 317
Conceptual warning ... 318
Conclusion .. 318

Appendix: MATLAB program examples 319

References ... 326

Index .. 340