INTRODUCTION TO NUMERICAL GEODYNAMIC MODELLING

Until now, numerical modelling of geodynamic processes has been the domain of highly trained mathematicians with long experience of numerical and computational techniques. Now, for the first time, students and new researchers in the Earth Sciences can learn the basic theory and applications from a single, accessible reference text.

Assuming only minimal prerequisite mathematical training (simple linear algebra and derivatives) the author provides a solid grounding in the basic mathematical theory and techniques, including continuum mechanics and partial differential equations, before introducing key numerical and modelling methods. Eight well-documented and state-of-the-art visco-elasto-plastic, 2D models are then presented, which allow robust modelling of key dynamic processes such as subduction, lithospheric extension, collision, slab break-off, intrusion emplacement, mantle convection and planetary core formation.

Incorporating 47 practical exercises and 67 MATLAB examples (for which codes are available online at www.cambridge.org/gerya) this textbook provides a user-friendly introduction for graduate courses or self-study, and encourages readers to experiment with geodynamic models first hand.

TARAS GERYA was awarded a Ph.D. in 1990 from the Moscow State University and went on to become a Senior Researcher and Head of the Laboratory of Metamorphism at the Institute of Experimental Mineralogy, Russian Academy of Sciences, Moscow. He was awarded a Habilitation in petrology before moving to the Ruhr University of Bochum, Germany in 2000 as an Alexander von Humboldt Foundation Research Fellow. In 2004 he took up a position as Senior Research Scientist in the Department of Earth Sciences at ETH-Zurich, Switzerland, while continuing to be an Adjunct Professor in the Geology Department of Moscow State University. He was awarded a Habilitation in numerical geodynamic modelling by ETH-Zurich in 2008 and the Golden Owl Prize 2008 from ETH students for teaching of continuum mechanics and numerical geodynamic modelling. Dr Gerya is the author of over 50 papers on geodynamic modelling in leading peer-review journals.

INTRODUCTION TO NUMERICAL GEODYNAMIC MODELLING

TARAS V. GERYA

Department of Earth Sciences, Swiss Federal Institute of Technology (ETH-Zurich)

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

http://www.cambridge.org Information on this title: www.cambridge.org/9780521887540

© Taras Gerya 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Gerya, Taras. Introduction to numerical geodynamic modelling / Taras Gerya. p. cm. Includes bibliographical references and index. ISBN 978-0-521-88754-0 (hardback) 1. Geophysics – Mathematical models. 2. Geodynamics – Mathematical models. I. Title. QE501.4.M38G47 2010 550.1'5118 – dc22 2009036645

ISBN 978-0-521-88754-0 Hardback

Additional resources for this publication at www.cambridge.org/9780521887540

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Acknowledgements		page x
	Intro	1	
		What is this book?	1
		What this book is not	1
		Get started	1
		Short history of geodynamics and numerical geodynamic	
		modelling	4
		A few words about programming and visualisation	7
		How to use this book	8
		Programming exercises and homework	9
1	The continuity equation		11
	1.1	Continuum – what is it?	11
	1.2	Continuity equation	13
	1.3	Eulerian and Lagrangian points – what is the difference?	14
	1.4	Derivation of the Eulerian continuity equation	15
	1.5	Derivation of the Lagrangian continuity equation	18
	1.6	Comparing Eulerian and Lagrangian continuity equations.	
		Advective transport term	20
	1.7	Incompressible continuity equation	23
		Analytical exercise	23
		Programming exercise and homework	24
2			25
	2.1 Density of rocks and minerals. Equations of state		25
	2.2	Gravity and gravitational potential	30
		Analytical exercise	34
		Programming exercises and homework	35

vi		Contents	
3	Numerical solutions of partial differential equations		
	3.1		37
	3.2	Solving linear equations	43
	3.3	Geometrical and global indexing of unknowns	47
		Programming exercises and homework	48
4	Stre	ss and strain	51
	4.1	Stress	51
	4.2	Strain and strain rate	56
		Analytical exercise	59
		Programming exercise and homework	60
5	The momentum equation		61
	5.1	Momentum equation	61
	5.2	Newtonian law of viscous friction	64
	5.3	Navier–Stokes equation	65
	5.4	Poisson equation	68
	5.5	Stream function approach	69
		Analytical exercise	71
		Programming exercise and homework	71
6		cous rheology of rocks	73
	6.1	Rock rheology	73
	6.2	Effective viscosity	74
	6.3	Non-Newtonian channel flow	79
		Programming exercises and homework	80
7	Nur	nerical solutions of the momentum and continuity equations	83
	7.1	Grids	83
	7.2	Discretisation of the equations	86
	7.3	Conservative finite differences	87
		Boundary conditions	92
	7.5	Indexing of unknowns	95
		Programming exercises and homework	101
8		advection equation and marker-in-cell method	105
		Advection equation	105
	8.2	Eulerian advection methods	106
	8.3	Marker-in-cell techniques	113
		Programming exercises and homework	119
9		heat conservation equation	123
	9.1	Fourier's law of heat conduction	123
	9.2	Heat conservation equation	124
	9.3	Heat generation and consumption	127

	Contents	vii
	9.4 Simplified temperature equations	128
	9.5 Heat diffusion timescales	129
	Analytical exercises	130
	Programming exercises and homework	131
10	Numerical solution of the heat conservation equation	133
	10.1 Explicit and implicit formulation of the temperature	
	equation	133
	10.2 Conservative finite differences	135
	10.3 Advection of temperature with Eulerian methods	140
	10.4 Advection of temperature with markers	141
	10.5 Thermal boundary conditions	144
	Programming exercises and homework	146
11	2D thermomechanical code structure	149
	11.1 What do we expect from geodynamic codes?	149
	11.2 Thermomechanical code structure	150
	11.3 Adding self-gravity and free surface	158
	Programming exercise and homework	163
12	Elasticity and plasticity	165
	12.1 Why care about elasticity and plasticity?	165
	12.2 Elastic rheology	165
	12.3 Rotation of elastic stresses	168
	12.4 Maxwell visco-elastic rheology	172
	12.5 Plastic rheology	173
	12.6 Visco-elasto-plastic rheology	175
	Analytical exercise	177
	Programming exercises and homework	177
13	2D implementation of visco-elasto-plastic rheology	179
	13.1 Viscous-like reformulation of visco-elasto-plasticity	179
	13.2 Structure of visco-elasto-plastic thermomechanical	
	code	180
	13.3 Visco-elasto-plastic iterations	189
	Programming exercises and homework	191
14	The multigrid method	193
	14.1 Multigrid – what is it?	193
	14.2 Solving the Poisson equation with multigrid	200
	14.3 Solving Stokes and continuity equations with multigrid	205
	Programming exercises and homework	217
15	Programming of 3D problems	221
	15.1 Why simply not always 3D?	221

viii		Contents	
	15.2	3D staggered grid and discretisation of momentum,	
		continuity, temperature and Poisson equations	222
	15.3	Solving discretised 3D equations	231
		Programming exercises and homework	239
16	Numer	rical benchmarks	241
	16.1	Code benchmarking: why should we spend time on it?	241
	16.2	Test 1. Rayleigh–Taylor instability benchmark	242
	16.3	Test 2. Falling block benchmark	244
	16.4	Test 3. Channel flow with a non-Newtonian rheology	246
	16.5	Test 4. Non-steady temperature distribution in a	
		Newtonian channel	247
	16.6	Test 5. Couette flow with viscous heating	250
	16.7	Test 6. Advection of sharp temperature fronts	253
	16.8	Test 7. Channel flow with variable thermal conductivity	253
	16.9	Test 8. Thermal convection with constant and variable	
		viscosity	255
	16.10	Test 9. Stress build-up in a visco-elastic Maxwell body	260
	16.11	Test 10. Recovery of the original shape of an elastic slab	261
	16.12	Test 11. Numerical sandbox benchmark	263
	16.13	Possible further benchmarks	267
		Programming exercises and homework	267
17	Design	n of 2D numerical geodynamic models	269
	17.1	Warning message!	269
	17.2	What is numerical modelling all about?	269
	17.3	Material properties	270
	17.4	Visco-elasto-plastic slab bending	271
	17.5	Retreating oceanic subduction	276
	17.6	Lithospheric extension	279
	17.7	Continental collision	282
	17.8	Slab breakoff	287
	17.9	Intrusion emplacement into the crust	291
	17.10	Mantle convection with phase changes	296
	17.11	Deformation of self-gravitating planetary body	301
		Programming exercise and homework	306
	Epilog	ue: outlook	307
		Where are we now?	307
		Where to go further?	307
		State-of-the-art overview	311
		Efficient direct solvers	312
		Parallelisation of numerical codes	313

Contents	ix
Mesh refinement algorithms	313
Including complex realistic physics in numerical	
geodynamic models	314
3D visualisation challenges	317
Conceptual warning	318
Conclusion	318
Appendix: MATLAB program examples	319
References	326
Index	340

Acknowledgements

In relation to this book I'd like to acknowledge many people and I'll try to do this in chronological order. I'm grateful to my wife Irina for her inspiration and support. I'm grateful to my Ph.D. supervisor and good friend of mine, Leonid Perchuk for suggesting that I start with numerical modelling in 1995 (a long time ago, indeed, but I feel like it was yesterday). I'm grateful to Alexander Simakin for explaining to me in a few words what numerical modelling is about, when I had just started to learn it and was really puzzled about what to do with all these PDEs written in textbooks (he told me that I simply have to compose and solve altogether as many linear equations as I have unknowns and this is really the main idea behind numerical modelling). I'm grateful to Roberto Weinberg and Harro Schmeling for their excellent paper about polydiapirs published in 1992 which introduced me to the marker-in-cell techniques when I had just started. I'm grateful to Alexey Polyakov for suggesting that I use upwind differences for solving the temperature equation when I was programming my first thermomechanical code. I'm grateful to Walter Maresch and Bernhard Stöckhert for cooperating with me on modelling of subduction processes which is a challenging topic and stimulated a lot of my code developments. I'm grateful to David Yuen – my continuous co-author in numerics – for our long-term join work and friendship (after we met in 2001 at AGU in San Francisco) and for many great suggestions concerning this book. I'm grateful to Paul Tackley for telling me about the fully staggered grid in 2002 (I was using the half-staggered one before that time) and for introducing me to multigrid in 2005 as well as for joint studies and good suggestions concerning a proposal for this book. I'm grateful to Jean-Pierre Burg for inviting me to ETH-Zurich and cooperating with me on challenging modelling projects (which again triggered many code developments) and for being a very careful and constructive first reader of this book. I'm grateful to Yuriy Podladchikov for many stimulating discussions, continuous healthy criticism and challenging suggestions (for example, adding elasticity and plasticity to my codes that 'spoiled' six months of my life). I'm

Acknowledgements

grateful to Boris Kaus for arguing and discussing with me about numerics which we both like so much (although he is more inclined toward finite elements while I like finite differences) and for great detailed comments and suggestions on the initial version of this book. I'm grateful to James Connolly for fruitful work on coupling of thermodynamics and phase petrology with thermomechanical experiments (what I call petrological-thermomechanical numerical modelling). I'm grateful to David May for very creative checking of the first book version and many good hints about its content. I'm grateful to my son Bogdan for the computer and graphic assistance, to my parents Lyudmila and Viktor and my entire family for the moral support. I'm grateful to all my students and co-authors for bright ideas and great work done together. Finally, I'm grateful for the generous support of my numerical modelling projects by Alexander von Humboldt foundation fellowships and ETH (TH -12/04–1, TH -12/05–3, TH -08 07–3) and SNF (200021–113672/1, Topo-4D, 4D-Adamello) research grants.

xi