Cambridge University Press 978-0-521-88752-6 - Flow, Deformation and Fracture: Lectures on Fluid Mechanics and the Mechanics of Deformable Solids for Mathematicians and Physicists Grigory Isaakovich Barenblatt Table of Contents More information

Contents

	Foreword Preface					
	Intr	oduction	1			
1	Idealized continuous media: the basic concepts					
	1.1	The idealized model of a continuous medium	10			
	1.2	Properties of a continuum and its motion. Density, flux and				
		velocity. Law of mass balance	18			
	1.3	Law of momentum balance. Stress tensor	24			
2	Dimensional analysis and physical similitude					
	2.1	Examples	29			
	2.2	Dimensional analysis	37			
	2.3	Physical similitude	40			
	2.4	Examples. Classical parameters of similitude	43			
3	The	The ideal incompressible fluid approximation: general concepts				
	and	relations	48			
	3.1	The fundamental idealization (model). Euler equations	48			
	3.2	Decomposition of the velocity field in the vicinity of an				
		arbitrary point. The vorticity. The strain-rate tensor	51			
	3.3	Irrotational motions. Lagrange's theorem. Potential flows	53			
	3.4	Lagrange–Cauchy integral. Bernoulli integral	56			
	3.5	Plane potential motions of an ideal incompressible fluid	58			
4	The ideal incompressible fluid approximation: analysis					
	and applications					
	4.1	Physical meaning of the velocity potential. The Lavrentiev				
		problem of a directed explosion	63			
	4.2	Lift force on a wing	66			

viii		Contents		
5	The and	linear elastic solid approximation. Basic equations boundary value problems in the linear theory		
	of elasticity			
	5.1	The fundamental idealization	79	
	5.2	Basic equations and boundary conditions of the linear		
		theory of elasticity	86	
	5.3	Plane problem in the theory of elasticity	89	
	5.4	Analytical solutions of some special problems in		
		plane elasticity	95	
6	The	linear elastic solid approximation. Applications:		
	brit	tle and quasi-brittle fracture; strength of structures	101	
	6.1	The problem of structural integrity	101	
	6.2	Defects and cracks	102	
	6.3	Cohesion crack model	109	
	6.4	What is fracture from the mathematical viewpoint?	113	
	6.5	Time effects; lifetime of a structure; fatigue	119	
7	The	Newtonian viscous fluid approximation. General		
	com	ments and basic relations	124	
	7.1	The fundamental idealization. The Navier-Stokes equations	124	
	7.2	Angular momentum conservation law	128	
	7.3	Boundary value and initial value problems for the Newtonian		
		viscous incompressible fluid approximation. Smoothness of		
		the solutions	129	
	7.4	The viscous dissipation of mechanical energy into heat	135	
8	The Newtonian viscous fluid approximation. Applications:			
	the	boundary layer	137	
	8.1	The drag on a moving wing. Friedrichs' example	137	
	8.2	Model of the boundary layer at a thin weakly inclined wing		
		of infinite span	140	
	8.3	The boundary layer on a flat plate	143	
9	Adv	anced similarity methods: complete and incomplete		
	sim	ilarity	150	
	9.1	Examples	150	
	9.2	Complete and incomplete similarity	153	
	9.3	Self-similar solutions of the first and second kind	157	
	9.4	Incomplete similarity in fatigue experiments		
		(Paris' law)	158	
	9.5	A note concerning scaling laws in nanomechanics	161	

Cambridge University Press
978-0-521-88752-6 - Flow, Deformation and Fracture: Lectures on Fluid Mechanics and the Mechanics
of Deformable Solids for Mathematicians and Physicists
Grigory Isaakovich Barenblatt
Table of Contents
More information

		Contents	ix
10	The ic	leal gas approximation. Sound waves; shock waves	164
	10.1	Sound waves	164
	10.2	Energy equation. The basic equations of the ideal gas model	167
	10.3	Simple waves. The formation of shock waves	168
	10.4	An intense explosion at a plane interface: the external	
		intermediate asymptotics	171
	10.5	An intense explosion at a plane interface: the internal	
		intermediate asymptotics	173
11	Turbu	llence: generalities; scaling laws for shear flows	182
	11.1	Kolmogorov's example	185
	11.2	The Reynolds equation. Reynolds stress	187
	11.3	Turbulent shear flow	189
	11.4	Scaling laws for turbulent flows at very large	
		Reynolds numbers. Flow in pipes	190
	11.5	Turbulent flow in pipes at very large Reynolds numbers:	
		advanced similarity analysis	195
	11.6	Reynolds-number dependence of the drag in pipes	
		following from the power law	201
	11.7	Further comparison of the Reynolds-number-dependent	
		scaling law and the universal logarithmic law	204
	11.8	Modification of the Izakson–Millikan–von Mises analysis	• • • •
		of the flow in the intermediate region	208
	11.9	Further comparison of scaling laws with experimental data	211
	11.10	Scaling laws for turbulent boundary layers	219
12	Turbu	llence: mathematical models of turbulent shear flows	
	and of	f the local structure of turbulent flows at very large	
	Reyno	olds numbers	225
	12.1	Basic equations for wall-bounded turbulent shear flows.	
	10.0	Wall region	225
	12.2	Kolmogorov–Prandtl semi-empirical model for the wall	
	10.0	region of a shear flow	227
	12.3	A model for drag reduction by polymeric additives	230
	12.4	The local structure of turbulent flows at very large	004
		Reynolds numbers	234
	Biblio	graphy and References	243
	Index		253