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Elephants and Horses

Things change. Sometimes they change gradually, sometimes dramatically. The
prevailing concept of change in psychology consists of only one form of change,
linear change, which is simply undifferentiated, and with the assumption that
outcomes are proportional to inputs in a straightforward manner. The overre-
liance among psychologists and others on the general linear model as a statistical
tool for depicting change has only served to reinforce this monochrome concep-
tualization of change. Perhaps the most significant deviations from the concept
of linear change are the concepts of equilibrium and randomness. For most intents
and purposes, the concept of equilibrium has been used to describe places or
times when change stops occurring. Randomness suggests that the changes are
unpredictable and not explicable by any known concepts or predictors.

Nonlinear dynamical systems (NDS) theory significantly enriches our capa-
bility to conceptualize change, and it provides a rich array of constructs that
describe many types of change. The concept of equilibrium is no longer specific
enough to describe either the change or the events that surround the point where
change stops. The new constructs are the attractors, bifurcations, chaos, frac-
tals, self-organization, and catastrophes. As this chapter explains, each of these
constructs contains several more, including those associated with the “complex-
ity” of a system. Importantly, change is not proportional to inputs. Large inputs
sometimes produce small results, and a small input at the right time can produce
a dramatic result.

Psychology is not the first science to break out of the linear rut. According
to Stewart (1989), the physical sciences made the transition more than a half-
century ago:

So ingrained became the linear habit, that by the 1940s and 1950s many scientist[s]
and engineers knew little else. . . . [W]e live in a world which for centuries acted as
if the only animal in existence was the elephant, which assumed that holes in the
skirting-board must be made by tiny elephants, which saw the soaring eagle as a
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2 Stephen J. Guastello and Larry S. Liebovitch

wing-eared Dumbo, [and] the tiger as an elephant with a rather short trunk and
stripes (1989, p. 83–84).

Some nonlinear phenomena, particularly chaos, force us to reconsider what it
means for an event to be random. According to Mandelbrot (1983), the word
random came into English by way of a medieval French idiom meaning “the
movements of a horse that the rider cannot predict” (p. 201). Later-day statistics
and experimental design have placed a great deal of emphasis on what the rider
does not control, resulting in the notion that variability in observations is either
“due to the model” or “due to error.” NDS places more emphasis, however, on
the horse’s point of view: There are reasons for the horse’s motions, and its rider
can get used to them or not. Less metaphorically, simple deterministic equations
can produce processes that appear random, but closer scrutiny may indicate that
they are not. It follows that a lot of so-called error variance can be accounted for
if we can identify the processes that generated the observations; those processes
are most likely to be overwhelmingly nonlinear.

In contemporary colloquial English, people speak of “random events” when
referring to events that occur without any apparent connection to prior events
or to any clues about which the speaker is aware. In NDS, these events are
called emergent phenomena. Their important features are their disconnection
with recent past events and that they occur without the deliberate action of
any person or agent. In other words, those phenomena are novel, and they can
sometimes be clear examples of nonlinear events and deterministic processes,
as will become apparent throughout this book.

General Systems Theories and Paradigms

One of the conceptual foundations of NDS is the general systems theory (GST),
an interdisciplinary theory that contains rules, propositions, and constructs that
extend beyond the confines of a single academic discipline. Within the realm of
GSTs, there is a strong representation of mathematically centered theories; this
approach is usually attributed to von Bertalanffy (1968) and Wymore (1967).
NDS is also an example of GST that is centered on principles of mathematical
origin.

A GST can be regarded as a metatheory and as an overarching methodolog-
ical approach in some cases. A metatheory is a theory that organizes concepts,
objects, or relationships inherent in several local (or specific) theories and places
those into an overarching conceptual framework. The development of such theo-
ries facilitates interdisciplinary cross-fertilization because at the metatheoretical
level, scholars from different disciplines will share a conceptual framework. For
instance, a theory that successfully solves a problem in macroeconomics with
principles of evolutionary biology would qualify as an example of such cross-
fertilization. Thus specific objects can be interchanged from one application to
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Introduction to Nonlinear Dynamics and Complexity 3

another, but the relationships among those objects could remain approximately
the same. Another approach might show interchangeability of objects and rela-
tionships, but the “blueprint” that defines the metatheory would tell the scientist
where to look for objects and relationships that could be useful. GST and NDS
can both be seen as examples of metatheories. In fact, the same concepts that are
encountered in this book can also be found in texts that are concerned with the
subject matter of other academic disciplines, such as economics and biology.

When viewed as a methodology, a general systems analyst would typically
begin with a description of the phenomenon of interest and assess the relevance
of particular tenets of the GST to that phenomenon. For example, if one were
to observe a nonnormal frequency distribution with a sharp peak near the left
and a long tail to the right, one might hypothesize that a power law distribution
and the dynamics that usually go with it (see later in this chapter) were involved.
The next step would be to create a model to represent the system using the
tools and constructs of the GST plus any adaptations that are specific to the
application. The model-making process typically draws on the past successes and
failures encountered with applications of the general theory. If the GST is truly
meritorious, the knowledge gained from a successful application would increase
the knowledge about the core principles of the theory and thus facilitate the
hunt for further applications. Hence one good application serves as a metaphor
for another (Guastello, 1995, pp. 4–6), and NDS applications have indeed found
their way into many applications within physics, chemistry, biology, psychology,
economics, sociology, and political science. With repeated successes, one can
develop one’s intuition as to where dynamical events of different types might be
found.

Scholars have pondered whether NDS can be considered a paradigm of sci-
ence itself (Allen & Varga, 2007; Dore & Rosser, 2007; Fleener & Merritt, 2007;
Goerner, 1994; Guastello, 1997, 2007; Ibanez, 2007). A new scientific paradigm
would represent a new approach to a wide range of problems and ask entirely
different classes of questions. It would pursue its answers with its own set of stan-
dards and challenges. Thus a new paradigm unearths and explains phenomena
that could not have been approached through pre-paradigmatic means. Addi-
tionally, the new paradigm could be shown to provide better, more compact,
and more accurate explanations for existing questions.

NDS shows other symptoms of paradigmatic behavior beyond its new per-
spective on randomness, nonlinear structures, and system change. For one thing,
the concept of a dimension is not what it used to be. Although society at large
has assimilated the four basic dimensions of Euclidean space and time, mathe-
maticians have rendered 5 through N dimensions as comfortable abstractions,
and social scientists have extensively analyzed complex multidimensional data
spaces using factor analysis and multidimensional scaling. NDS offers a new
development: fractional dimensions. There are entities between lines and planes,
planes and volumes, and so on. Fractional dimensions, or fractals, are described
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4 Stephen J. Guastello and Larry S. Liebovitch

later in this chapter. It is worthwhile to point out early that the fractals serve as
good indicators of the complexity of a system.

Our notions about the nature of a system have shifted as well. In Newton’s
view of a mechanical system, the function of the whole can be understood by
understanding the function of each of the parts. A correction of a flaw in a
system can be accomplished by removing and replacing one of its parts. In a
complex adaptive system (CAS), however, the whole is greater than the sum of its
parts. This description should surely ring familiar to psychologists because of
the Gestalt laws of perception. The parts of the system, perceptual or otherwise,
interact with each other, shape each other, and pass information around, and they
are not replaceable or removable without fundamentally altering the dynamics
of the system as a whole. Furthermore, attempts to correct “flaws,” or to change
otherwise a part in a CAS, often do not succeed because the parts adapt in such
a way as to protect the system from the intrusions of the outside tinkerer. By
the same token, a CAS can survive intrusions or assaults by the same means;
the tendency for brain tissue to pick up a function that was lost by a nearby
tissue area is an example. These self-organizing tendencies are a primary area of
interest in the study of NDS, and they are expanded further in this chapter and
throughout the remainder of this book.

Has NDS produced better explanations of phenomena? The answer in each
chapter that follows is “yes.” It has described phenomena that could not be
described in any other way, especially when temporal dynamics are concerned.
In some cases, they provide an organizing center where several partially relevant
theories were needed to describe a phenomenon; work-group coordination is
one such example. Although the explanations may appear more complex in one
respect, they become more efficient to the extent that the general principles
transcend many problems in psychology and also expand beyond the usual
confines of psychology.

Does it account for more of the data than conventional linear models? In
most cases reported in this book, there was no linear alternative available, so
the answer is a simple “yes.” In the cases in which it was possible to compare R2

coefficients for linear and nonlinear models, the cumulative advantage is 2:1 in
favor of the nonlinear models (Guastello, 1995, 2002). That is to say that about
50% of the explanation for a phenomenon comes from knowing what dynamics
are involved.

Elements of NDS Functions

It is no secret that the central concepts of NDS have mathematical origins, some
of which might qualify as exotic even among mathematicians. Fortunately, the
majority of the concepts can be represented in pictorial or graphic form, which
helps interpretations greatly. In psychological applications, we only need to use
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Introduction to Nonlinear Dynamics and Complexity 5

the products of the mathematics; we do not need to reperform derivations, solve
differential equations, or anything of that nature. The principles are analytic
when applied to psychology, nonetheless. Some equations have a great deal of
meaning, and they serve to codify the dynamical principles concisely. There are
some novel computations that are often used in NDS research, and some of
them can be rendered statistically, which is perhaps more compatible with the
analytic habits of social scientists.

The equations that we do encounter are all functional and sometimes struc-
tural as well. Some functions that we encounter state that a dependent measure
Y is a nonlinear function of another variable X. Some functions are itera-
tive, in which Y at Time 2 (Y2) is a function of Y1 and other variables in the
system.

In an iterative function, a time series of Y is produced by running Y1 through
the equation to produce Y2; Y2 is then run through the equation to produce
Y3, and so on, thereby producing a forecast of future behavioral patterns. Many
psychological phenomena that occur over time are iterative in nature, such as
the flow of a conversation or series of conversations between two people; see
Chapters 9 and 11 through 13 in this volume. If we do not know what equation
is the best representation for the phenomenon, it helps to recognize when an
iterative function could be implied.

Structural equations are similar to functional equations, but they have the
added feature of allowing, if not encouraging, the user to plug complex functions
into a position that might have been signified by a single variable. For instance,
we might have a function containing a bifurcation effect called c, but c might
consist of several psychologically defined variables. Sometimes an element that
looks as simple as c could turn out to be a constant, a variable, or an entire
complex function.

Control parameters are essentially independent variables, with the important
difference that they can act in ways that are often more interesting than the
simple additive relationships that are found in conventional research designs.
Several distinct types of control parameters are described in a later section of this
chapter and in subsequent chapters. Order parameters are essentially dependent
measures in the social scientist’s worldview. There may be more than one order
parameter in some complex dynamical systems, however. Order parameters
within a system might be completely independent of each other, or they might
interact with each other as they evolve over time.

The basic principles of nonlinear dynamics are presented next. In addition
to the references that are interspersed in the text, we recommend Abraham and
Shaw (1992), Bassingthwaighte, Liebovitch, and West (1994), Kaplan and Glass
(1995), Korsch and Jodl (1999), Liebovitch (1998), Nicolis and Prigogine (1989),
Puu (2000), Scott (2005), Sprott (2003), and Thompson and Stewart (1986) as
broad technical references to the mathematical literature.
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6 Stephen J. Guastello and Larry S. Liebovitch

The chapter concludes with an overview of the analytic techniques that one
might apply to real data to determine which types of dynamics are present.
The authors of the subsequent chapters elaborate on their uses of particular
techniques.

Attractors and Chaos

An attractor can be seen as a box of space in which movement could take place
or not. When an object, represented by a point, enters the space, the point does
not leave, unless a strong enough force is applied to pull it out. An attractor, like
a magnet, has an effective range in which it can draw in objects, known as its
basin. Some attractors are stronger than others, and stronger attractors have a
wider basin.

An attractor is regarded as a stable structure because all the points within it
follow the same rules of motion. There are four principal types of attractors: the
fixed point, the limit cycle, toroidal attractors, and chaotic attractors. Each type
reflects a distinctly different type of movement that occurs within it. Repellors
and saddles are closely related structures that are not structurally stable.

Fixed-Point Attractors

As its name suggests, a fixed-point attractor is one where the trajectories of points
that are pulled within it gravitate toward a fixed point. Figure 1.1A illustrates
points that are being pulled in from all directions toward the epicenter. A point
might start its path by shooting by the attractor, and might even have a chance
of breaking free, but is pulled into the attractor, where it rests. Figure 1.1B is a
spiral attractor, also known as a sink; the point spirals into the epicenter rather
than moving in directly.

Attractor behavior that is viewed in a time series would look similar to the
trends shown in Figure 1.1D, which would correspond most closely to the case
where points are being pulled in from all directions. The structural equation
that generates that type of motion is:

Z2= θ1exp(θ2 Z1). (1.1)

Equation 1.1 shows the function in iterative form, where the order parameter
Z2 is a function of itself at a previous point in time (Z1). θ i are empirical weights
that can be determined through nonlinear regression. θ1 is a proportionality
constant (this is likely to become important when two or more attractors are
involved in the dynamical field); θ2 is the more important of the two weights
because it reflects how quickly the points are converging onto the fixed point.
Notice that the trajectories of the points in the figure all started with different
initial values but ended up on the same attractor. If θ2 is a negative number,
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Introduction to Nonlinear Dynamics and Complexity 7

S

Figure 1.1. Gallery of basic dynamics: A, fixed point attractor (Eqs. 1.1 and 1.2); B, spiral
attractor (Eqs. 1.3); C, trajectory of a control point in a field containing two fixed points;
D, time series of points gravitating to a fixed point; E, limit cycle (Eqs. 1.4 and 1.5);
F, time series for a dampened oscillator (Eq. 1.6); G, limit cycle created by organizing
fixed points into a circle; H, system of three repellors; I, three coupled oscillators; J, saddle
point; K, saddle created by a perturbed pendulum.
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8 Stephen J. Guastello and Larry S. Liebovitch

the points are indeed converging; otherwise the points’ trajectories would be
expanding exponentially.

Another equation for a fixed-point attractor that is used often is:

Z2 = K /[1 + θ1exp(θ2 Z1)]. (1.2)

A particular value of Z in Eq. 1.2 is recognized as the asymptotic point, which
is designated as K. The regression weights would indicate how quickly the points
were reaching K. A close variation on Eq. 1.2 is one in which the researcher wants
to determine whether an exogenous independent variable X is responsible for
the movement of Z to K. In that case, one would substitute X1 for Z1.

A spiral attractor is a more complicated phenomenon to analyze, but we can
describe it nonetheless. Imagine that the trajectory of points on the spiral has
the usual X and Y coordinates, and both X and Y are changing over time, t. We
would need to write equations for both the X and Y functions (Puu, p. 21):

X = θ1 exp[θ2t cos(θ3t + θ4)] (1.3)

Y = θ5 exp[θ2t cos(θ 6t + θ7)].

Equations 1.3 allow for the full range of possibilities that the spiral can be
perfectly circular or stretched (elliptical) by some amount in the vertical or
horizontal direction by changing θ1, θ3, θ5, or θ6. θ4 and θ7 denote the lower
boundaries of the cosine functions in real numbers. Notice that the forcing
function, θ2, is common to both axes. If θ2 were negative, the system would
be converging to the fixed point and thus stable. If θ2 were positive, however,
the points would be floating away from the epicenter, and the spiral would
be unstable. The spiral attractor functions become more interesting when we
consider repellors and saddles a bit later.

Figure 1.1C illustrates what can happen in a dynamic field containing two
fixed-point attractors. A point that might have been entered into the dynamic
field in the neighborhood of the upper attractor makes a few irregular turns
around the attractor and then travels to the other attractor. Nothing prevents
the point from revisiting the first attractor before landing on the second one,
where it appears to be spending most of its time. The convoluted pathways take
different forms, depending on the relative strength of the two attractors, their
proximity to each other, and the exact location where the traveling point is
entered.

Figure 1.1C is, in essence, the three-body problem that got the entire study of
nonlinear dynamics going. Henri Poincaré made a profound contribution in the
1890s by identifying the problem that we did not have the mathematics available
to characterize the path of a “speck of dust” in the neighborhood of two celestial
bodies, that is, two strong attractors (Stewart, 1989). Those trajectories were
eventually characterized as chaotic several decades later.
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Limit Cycles

A limit cycle attractor is also known as a periodic attractor. Its behavior is cyclic,
in the same way that the earth orbits the sun or the moon orbits the earth. The
motion of the point is thus depicted in Figure 1.1E. Once again, if a traveling
point enters the basin of attraction, it does not leave. Points entering from the
outside of the limit cycle are drawn into the attractor. Points that happen to be
inside it are pulled outward into the orbit but do not move toward the epicenter
in the way that fixed-point or spiral attractors do. Instead, there is an ongoing
oscillation around the epicenter value. Oscillating functions are common in
biology (May, 2001) and economic business cycles (Puu, 2000), although both
types of oscillators tend to become more complex by the presence of other
oscillators in the niche or economy.

A classic limit cycle can be generated by a simple function:

Z = sin(X). (1.4)

Again, one might substitute time, t, for the exogenous variable, X. One might
characterize the function in both an iterative and statistically tractable form as:

Z2 = θ1sin(Z1 − θ2) − θ3 cos(Z1 − θ4). (1.5)

Fourier analysis or spectral analysis is often employed to separate compound
oscillators. This is a common practice in auditory signal processing where the
sinusoidal components are additive. The generic structure of a compound oscil-
lator is defined as a sine function, a subtracted cosine function, plus another sine
function, and so on. θ1 and θ3 are forcing constants that adjust the amplitude
of the sinusoidal functions. θ2 and θ4 are lower limits of the oscillating variable
Z and depend on the scale used to measure Z. Note that if θ2 or θ4 becomes a
variable, then f(Z) becomes aperiodic.

Another way to obtain a limit cycle is to place a number of point attractors
in a circular configuration. If a point is injected into the neighborhood of this
configuration, it will exhibit the behavior of a limit cycle (Fig. 1.1G).

We can also have dampened oscillators, which exhibit periodic behavior, but
the amplitude of the fluctuations gradually becomes smaller until the order
parameter gravitates to a fixed point. The temporal signature of a dampened
oscillator would look like the time series that is shown in Figure 1.1F. A dampened
oscillator might not be easily discerned from a spiral fixed point. One would be
looking for a control variable that induced the dampening effect. Equation 1.6
would be a likely place to start:

Z2 = θ1 exp[θ2 Xcos(θ3 Z1 + θ4)], (1.6)

where θ2X is the variable that induces the dampening with its regression coeffi-
cient. Note that Eq. 1.6 is structurally the same as Eq. 1.3, with a substitution of
X and Z1 for t.
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10 Stephen J. Guastello and Larry S. Liebovitch

In light of the potential similarity of spiral points and dampened oscillators,
psychologists who might encounter these dynamics should sample a long enough
time series to view the full dynamics of the system. The concept of “restriction of
range” is probably familiar to most psychologists from linear statistical analysis.
A comparable concept here is restriction of topological range, meaning that the
full range of topological events or movements needs to be captured in the
data set to draw reliable conclusions about the dynamics of the model under
study (Guastello, 1995). This principle will recur later in conjunction with other
dynamics.

We can also couple oscillators so that two or more are linked to each other.
Again using Eq. 1.6 as a starting point, X would be a second order parameter, and
it would also have an equation that is structured like Eq. 1.6. We can also imagine
a third oscillator Y in the system that is responsible for the sinusoidal forcing of
X. To close this system of three variables, let Z be the forcing parameter of Y:

Z2 = θ1 exp[θ2 Xcos(θ3 Z1 + θ4)],

X2 = θ5 exp[θ6Y cos(θ3 X1 + θ4)], (1.7)

Y2 = θ1 exp[θ2 Zcos(θ3 Z1 + θ4)].

According to a theorem by Newhouse, Ruelle, and Takens (1978), three
coupled oscillators are minimally sufficient to produce chaos. Chaos, for present
purposes, is a highly unpredictable time series of numbers or events that appears
random but that is actually the result of a deterministic process. Chaos in the
form of coupled oscillators can be readily demonstrated by joining one pen-
dulum to another (Fig. 1.1I), so that they all swing freely. Swing the pendulum
marked “1,” and watch the highly volatile motion of the others.

Not all combinations of three oscillators will produce chaos, however. Puu
(1993) examined different combinations that could occur in intertwined eco-
nomic cycles and concluded that although some combinations produce chaos,
some serve to dampen the volatility of the others in the system. It is also possible
to take two or more oscillators that are oscillating at different speeds, couple
them, and synchronize the whole set (Strogatz, 2003).

Repellors

A repellor is also a box of space, but it has the opposite effect on traveling points.
Any point that gets too close to it is deflected away from the epicenter. It does
not matter where the traveling point goes, so long as it goes away. Thus repellors
characterize an unstable pattern of behavior. We already encountered a type of
repellor when we considered the spiral with a positive coefficient.

Another type of repellor is more akin to the fixed point. A system containing
three such repellors is shown in Figure 1.1H. A beam of points coming in from
the left hits the edge of an attractor basin and is deflected outward, as indicated
by the thin lines around the repellor regions. In some cases, the repellors deflect
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